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The classical vehicle routing problems are designed for distance or cost reduction. The   routes generated by the model 
will be insensitive towards the environmental impact. In this work, a green vehicle routing problem is addressed. A meta-
heuristic algorithm combining an Ant Colony Optimization algorithm with a Variable Neighbourhood Search algorithm 
is developed to solve the problem. The hybrid heuristic will search the solution space for the routing strategy, that 
minimizes the total supply chain cost which comprises of economic as well as emission cost.  For consistency of solutions 
and solution convergence, the algorithm is tested on randomly generated problem instances. 

 
1. Introduction 

The backbone of the current industrial logistic networks is the fossil fuel based transportation sector. The distance or the time 
travelled by the vehicles account for the major component of the logistics cost. A minimization problem will design the routes 
with less time or distance variable. Greening the routes means implementing an environmental friendly vehicle route which 
will reduce the Green House Gas (GHG) emission. Among the greenhouse gases, CO2 has the major share in a global basis. 
Methane and N2O comes at the second and third with very less percentage contributions. The global emission scenario is 
shown in Figure 1.1.  The inter-governmental panel on climate change is proposing a curb of 50%-80% GHG emissions by 
2050 for avoiding serious and enduring climate change (4th assessment report of the inter-governmental panel on climate 
change). Figure 1.2 shows the global trend in CO2 emissions through the last decade which shows a clear trend of increase. 
India emits more than 5% of global CO2 emissions. In 2011, the transportation sector alone accounts for 22% of the global 
carbon emission (IEA STATISTICS, 2013). 
 

 
Figure 1.1 Global GHG Emission 

Source: IEA statistics, (2013) 
 

 
    Figure 1.2 Global GHG Emission 

Source: IEA statistics, (2013) 
  
   The classical vehicle routing problems aims at the possible economic cost reduction by proper assignment and demand 
allocation of potential clients towards a set of distribution centres. The general routing optimization problem will include the 
minimization of the distance travelled or time traversed for the customer service. The practical limitations of the business 
environment will impose the boundaries like maximum work hour constraints, maximum number and handling capacities of 
available transportation facilities and so on.   
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    In this work, a multi-depot capacitated vehicle routing problem is analyzed. A supply chain cost reduction model is 
developed for the problem. Economic and environmental factors are considered in the supply chain cost structure. The 
economic factors considered in this study include route operating costs, fuel consumption costs and other operational costs. 
The environmental impact is measured in terms of cost of tons of CO2 emission. Two algorithms namely, Ant Colony 
Optimisation (ACO) algorithm based heuristic and a hybrid algorithm combining ACO with Variable Neighbourhood Search 
(ACO-VNS) are proposed to solve the model. The algorithms are tested on problem instances randomly generated for a single 
product, two-echelon distribution-allocation supply chain. 
   In the literature, green-VRP can be broadly classified into three distinct problem scenarios, such as  
(i) Energy consumption based vehicle routing models (ii) Pollution and pollution reduction based models (iii) Waste 
management and reverse logistics related vehicle routing models. Lin et al. (2014) provides an outline of the research work in 
green logistics mainly confined from 2006 to 2012. Sbihi & Eglese (2007) has also reviewed the various scenarios coming 
under VRP and VRP variants such as, the green vehicle routing-scheduling problem and green logistics. Erdoäÿan & Miller-
Hooks (2012), Yong and Xiaofeng (2009), Xiao et al. (2012) and Ćirović et al. (2014) considers energy consumption based 
routing models. Wygonik (2011), Huang et al. (2012),  Lin et al. (2014), Demir et al. (2014), Kuo et al. (2014) and Jovanović 
et al. (2014) elucidates the pollution based routing scenarios.  
   The rest of the paper is structured as follows. Section 2 describes the problem considered in the work. Section 3 discusses 
the solution methodology adopted in the work. Section 4 reports the computational study, followed by results and discussion. 
Finally, the conclusions and suggestions for future research are given in Section 5. 
 

2. Problem Description: Green MDVRP 
In this work, a multi-depot capacitated vehicle routing problem (MDVRP) is considered. The problem is inspired from the two-
echelon forward supply chain of a single product, distribution model. The supply chain network consists of n customers and m depots. 
The demand sharing between the vehicles and the depots are not allowed in the model. As an obvious consequence, the customers 
with demand quantity greater than the truck load or depot capacity itself is not considered in the problem scenario. In order to ensure 
continues flow of demand distribution, a customer will have an immediate successor and predecessor in a route. The optimization 
model has to allocate the customers to the depots by designing minimum cost routes. The total cost component includes two types of 
costs namely, economic cost and environmental cost. The economic cost includes the route dependent fixed cost, the route operating 
costs and the fuel consumption cost. The environmental costs are evaluated in monetary terms considering the CO2 emissions. The 
assumptions imposed on the model are as follows:  
 The demand of the customers is known.  
 The capacities of depots and vehicles are known.  
 The geographical location of the depots and the customers are known and mapped in to a Euclidean plane. 
 Individual demand of each customer cannot exceed the capacity of a vehicle 
 Each vehicle starts and ends the route at the same depot.  
 Each depot and customer is visited by a vehicle exactly once i.e., the entire demand of the customer is met by a 

single vehicle. 
 Homogeneous Vehicles are used. Capacity, speed and emission parameters are same. 
 
2.1 Problem Formulation: Green MDVRP 
The green MDVRP model is formulated as a variant of the canonical vehicle routing problem with capacitated routes and 
depots. The total supply chain cost of the model is a function of the distance travelled and the demand distribution pattern 
inside the route.  
The notations used in the models are provided in Table 1.  
Decision variables 
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Table 2.1 Notations 

I Set of depots (i=1,2,…,d ), where d being the upper  bound on the number of depots 
J Set of customers (j=1,2,…,c), where c being the upper bound on the number of customers 
V             ܫ ∪  ܬ
lij           Euclidian distance from node i to node j, for all i ∈ V, j ∈V 
Cv         Variable vehicle operating cost per unit distance   
T         Fixed depot vehicle cost 
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Cfuel     Average fuel consumption cost per unit distance per unit vehicle weight 
FCO2   CO2 emission cost per unit weight of vehicle per unit distance 
Pf      Diesel fuel price per unit volume 
Vf  Volume of fuel consumption per unit distance per unit vehicle weight 
Wp  Weight of each delivered product (the weight of recycled products is neglected) 
WCO2  Weight of CO2 emission per liter consumption of diesel 
PCO2  Average price per unit weight of CO2 
k  Ratio of vehicle volume versus curb weight 
Wcargo  Cargo weight when vehicle traverse  a distance lij 
Wv  Average gross weight per vehicle through travelling on each route 
dj Demand of customer j, for all  j ∈ J 
Qv Capacity of the depot vehicle 

 
Objective function  
Minimize  
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   The objective function (2.1) represents the total supply chain cost of the network. The economic side of the supply chain 
costs including the routing costs, travel costs and the fixed route building costs. The emission cost of the network is measured 
in monetary terms of the carbon emission. It depicts the environmental impact of the supply chain. Constraints (2.2) and (2.3) 
are the capacity constraints associated with the routes and the depots, respectively. Constraint (2.4) ensures that each 
customer belongs to exactly one route, and that each customer has only one predecessor in the route. Constraint (2.5) 
guarantees the continuity of each route, and that each route terminates at the depot where the route starts. . Constraint (2.6) 
ensures that a customer must be assigned to a depot if there is a route connecting them. Constraints (2.7) and (2.8) specify the 
binary variables. 
 

3. Solution Methodology 
The np hard MDVRP is solved using two algorithms namely, an ant colony optimization based heuristic and a hybrid meta-
heuristic algorithm combining an Ant Colony Optimization (ACO) algorithm with a Variable Neighbourhood Search (ACO-
VNS). The details of the solution methodology are provided in the following subsection. The solution representation is given 
in Figure 3.1. The numbers, i=1, 2, …, n are used for customers and n+1 to n+m are used for representing depots. Zeros 
indicate the beginning or the end of a route. Every string must start by a depot element (i.e. string (i=1) ≥ n+1) and should 
end at a zero. 

 
 

(2.1) 
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Figure 3.1 Solution Representation 

 
3.1 Ant Colony Optimization (ACO) algorithm  
An evolutionary Ant Colony Optimization (ACO) based algorithm is modeled as a constructive, route building heuristic to 
solve the green MDVRP. The ant behavior for searching the quality food is adapted for finding the routes that optimizes the 
total supply chain cost. Ants mimic the vehicles or trucks in the problem. Every ant makes a trail with a chemical substance 
called pheromone. Ants travel from a depot to a customer or from a customer to another customer. The best customer node 
selection is guided by the collective information stored as a presence of the chemical substance, known as ant pheromones. 
The probability of selecting a pair of nodes for the solution increases as more ants use the same link (depot-customer or 
customer-customer). The search is restricted by the problem boundary conditions for generating feasible solutions. The 
heuristic constructs a complete tour for the first ant prior to the second ant starting its tour.  
   The algorithmic parameters are (i) Magnitude of the pheromone intensity, α, (ii) Magnitude of visibility, β, (iii) Evaporation 
rate of pheromone, ρ, (iv) Pheromone increment amount, Q, (v) Number of ants and number of iterations. The pheromone 
content between two nodes is represented using two matrices (depot-customer and customer-customer). All the elements in 
the initial pheromone matrix are set to α value. Probability matrices between the depot to customer (Pdc) and customer to 
customer (Pcc) are calculated based on the initial values. The probability between the two nodes i and j  is calculated using 
equation (3.1). 
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where τij is the pheromone intensity between the nodes i and j. The Ni
k represents the feasible neighborhood of ant k based on 

the problem boundary constraints. The visibility parameter between the edges i and j   of the ACO (ηij) is calculated using 
equation (3.2). 

jiij  and  nodebetween  aluefunction v
1

                 (3.2) 

   The ant travel starts from a randomly chosen depot. When it comes to the customer selection, the customer with the highest 
value of probability from the Pdc matrix is served. The route construction from the chosen depot changes the pheromone 
content, the vehicle product stock and the depot total serving potential. As an ant moves from one node to another, the 
pheromone content is updated using equation (3.3). The increment in the pheromone value is indicated as  Δτij

k . The 
increment in the pheromone trail is determined by equation (3.4). 
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   where, Q is the pheromone increment amount and Lk is the function value by the ant k on the edge (i, j). In this problem, Lk 
is the distance between the nodes for classical MDVRP. 
   The customer with the highest probability in the Pcc matrix with the already allocated customer is selected as the second 
customer. Then the pheromone trials between the selected nodes are updated. A route is constructed until the vehicle capacity 
constraint is met and the ant returns to the depot.  If the depot has sufficient capacity to serve more customers, the second 
route is constructed. When a depot capacity constraint is met, next depot is selected randomly. The route building continued 
till all the customers are visited. When a solution is generated from an ant, the pheromone levels are updated by the 
evaporation process. The pheromone evaporation on edge (i, j) is updated using equation (3.5). 
 τij = (1 - ρ) τij                  (3.5) 
 where, ρ is the parameter that controls the pheromone evaporation rate. 
   When all the customers are served, the total supply chain cost is calculated. The best solution is stored and updated as more 
ants pass by.  This procedure continues till the predetermined number of ants constructs the route. When a predetermined 

22 13 14 18 20 16 17 19 11 12 0 1 6 4 2 5 8 15 7 21 10 9 3 0 

Depot2 Route1 Depot1 Route1 Depot2 Route2 

Codes used: 
Numbers     1    -   n  : For customers ;    Numbers   n + 1  -   n + m         :  For Depots ;  

0: For new routes.  
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number of ants complete the construction of routes, the iteration number is incremented. The procedure is repeated till the 
predetermined number of ants and iterations are completed. 
 
3.2 ACO-VNS Based Heuristic 
The neighborhood region of the ACO solutions is explored by combining the meta-heuristic with a Variable Neighborhood 
Search. The kth neighborhood in the nth iteration, Nn

k is generated by swapping the ith element of the solution with jth elements, 
where j ≠ i. The flow chart for the proposed hybrid ACO-VNS based heuristic is shown in Figure 3.2. 
  
 

 
Figure 3.2 Flowchart of the proposed hybrid ACO-VNS based heuristic 
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   The neighborhood generation from a parent string is represented in the Figures 3.3 (a-c). The VNS algorithm will stop the 
iterations once the algorithm reaches the local minima. Two separate counters are used to count the number of ants and 
number of iterations. Once the ant counter attained a maximum pre-determined value the algorithm will stop sending new 
ants to find the solution and the control will straight away go to the next iteration. The algorithm will terminate when the 
number of iterations exceeds a maximum pre-determined value.   
 

1 2 3 4 
Figure 3.3(a) The Initial customer sequence of the VNS Algorithm. 

 

 

 

 

 Figure 3.3 (b) Neighborhood Generations: Exchange Rules 
 

2 1 3 4  3 2 1 4  4 2 3 1 

              

1 3 2 4  1 4 3 2  1 2 4 3 

Figure 3.3(c) The New Neighbourhood Solutions 
 

4. Computational Experiments 
The developed algorithms are coded in MATLAB and implemented on a Core i3 processor at 2.13 GHz PC with 3 GB RAM 
to solve the problem. The algorithms are tested on a set of randomly generated problem instances. 
 
4.1 Problem Instances 
The data for the MDVRP has been randomly generated. The problem instances are generated by varying different 
parameters such as the number of customers, n, number of depots m and vehicle capacity Qv. There are two sets of 
problems for different parameter configurations. The number of depots considered is 2, 3, 5 and 10. The vehicle capacity 
considered is 70 or 150. The number of customers, n considered is n ϵ {10, 15, 20, 30, 50}. The other data (demands, 
depot capacities, fixed costs) are also integers. The problem instances are   randomly generated with the following 
characteristics namely; (i) Demand follow a uniform distribution [20, 30]. (ii) Data pertaining to carbon emission and 
carbon costs are assumed based on Forbes (2009) and report of the Automotive Research Association of India (2008).  
The values for the various problem parameters are as follows. 
Cfuel   $1.0338 
T    $15/vehicle 
PCO2  $20 
WCO2   0.027 Ton 
Wprod   0.0189 Ton  
Vf   0.01653 L/Ton/km 
FCO2 

                    $0.89262/Ton/km 
Wcurb  16.2 Ton 
K  5 

4.2 Parameter Settings 
The Taguchi method of experimental design is conducted on a randomly generated problem instance and is adopted for 
the study. The values for the algorithmic parameters   are as follows.   

• Magnitude of pheromone intensity  (α) = 0.4 
• Magnitude of visibility (β) = 2 
• Evaporation rate of pheromone ( ρ)  = 0.2 
• Pheromone increment amount (Q) = 4 
• Number of ants =  100  
• Number of iterations = 40 

 
 

1 2 3 4 
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5. Results and Discussion 
The developed algorithms are tested on a number of randomly generated instances. The generated problem instances are 
characterized by the following criteria (i) The number of depots (m), (ii) The number of customers (n) (iii) The vehicle 
capacity (QV).  
   The solutions obtained for the problem instances using the proposed algorithms ACO and ACO-VNS are tabulated in Table 
5.1. Costmax, Costmin and Costaverage are the worst, best and average solutions obtained using the two heuristic algorithms in the 
computational study. The algorithms are tested for consistency by computing the deviation of the average solution from the 
best solution with respect to the average solution. The percentage deviation is calculated using the equation 5.1. 

100
Cost

CostCost





average

minaveragedeviation%         (5.1) 

   The percentage deviation of the ACO based heuristic varies from 0 % to 4.6774 % with a median value of 0.0244%. The 
ACO-VNS based heuristic also shows consistent performance with deviation ranging from 0 % to 1.5374 % with a median 
value of 0.0785%. 
 

Table 5.1 Computational Results of Proposed Heuristics 

PI n m Q 
ACO ACO-VNS 

Costmax Costmin Costaverage % deviation Costmax Costmin Costaverage % deviation 
1 10 2 70 4431.40 4431.4 4431.4 0.0000 4422.6 4422.6 4422.6 0.0000 
2 10 2 70 5378.20 5378.2 5378.2 0.0000 5366.9 5366.9 5366.9 0.0000 
3 15 2 70 7739.30 7738.6 7739.0 0.0052 7736.2 7734.8 7735.5 0.0090 

4 15 2 70 6575.00 6575.0 6575.0 0.0000 6569.2 6567.7 6568.2 0.0076 
5 20 3 70 10538.00 10538.0 10538.0 0.0000 10539.0 10537.0 10538.0 0.0095 
6 20 3 70 5478.90 5476.6 5478.1 0.0274 4463.2 4448.1 4454.6 0.1459 

7 20 3 150 9743.40 9686.3 9719.3 0.3395 96821.0 9670.8 9678.2 0.0765 
8 20 3 150 5608.80 5608.8 5608.8 0.0000 4576.1 4576.1 4576.1 0.0000 
9 30 3 70 13906.00 13873.0 13895.0 0.1583 13904.0 13870.0 13892.0 0.1584 
10 30 3 70 7640.00 7640.0 7640.0 0.0000 6655.8 6594.0 6625.7 0.4784 

11 30 3 150 16236.00 15769.0 15924.0 0.9734 14214.0 14130.0 14186.5 0.3983 
12 30 3 150 7848.40 6841.3 7177.0 4.6774 5797.3 5797.3 5797.3 0.0000 
13 50 5 70 26285.00 25457.0 25871.0 1.6002 26218.0 25425.0 25822.0 1.5374 
14 50 5 70 13082.00 13041.0 13062.0 0.1608 9862.0 9728.9 9795.5 0.6799 

15 50 5 150 28007.00 27995.0 28001.0 0.0214 24862.0 24821.0 24841.0 0.0805 
16 50 5 150 13436.00 13426.0 13431.0 0.0372 10202.0 10079.0 10140.0 0.6016 

     PI – Problem Instance; N-Number of Customers; M - Number of Depots; Q- Vehicle Capacity  

 
   Table 5.2 provides the cost improvement obtained using the hybrid meta-heuristic over the ACO based algorithm. The 
solution diversification by introducing a variable neighborhood search is showing a clear improvement in the search results. 
The results show that there is an improvement on an average of 8.56 %, 6.85 % and 8.48 % in the economic cost, the 
emission cost and the total supply chain cost respectively. The percentage gain or loss in costs is also provided in Table 5.2. 
Figure 5.1 shows the comparison between the performances of the two heuristics.  

 
Table 5.2 Comparative study of ACO and ACO-VNS results 

PI n m Q 
ACO ACO-VNS %change in  

economic cost 
%change in 

emission cost 
%change in 

total cost Economic 
cost 

Emission 
cost 

Total 
cost 

Economic 
cost 

Emission 
cost 

Total 
cost 

1 10 2 70 4192.0 239.4 4431.4 4189.0 237.6 4422.6 0.0716 0.7735 0.1986 
2 10 2 70 5167.0 211.2 5378.2 5167.0 211.2 5366.9 0.0000 0.0000 0.2101 

3 15 2 70 7326.0 412.6 7738.6 7323.0 411.8 7734.8 0.0410 0.1913 0.0490 

4 15 2 70 6256.0 319.0 6575.0 6252.0 315.7 6567.7 0.0639 1.0135 0.1100 
5 20 3 70 10240.0 297.8 10537.8 10238.0 298.9 10536.9 0.0195 -0.3857 0.0081 
6 20 3 70 5223.0 253.6 5476.6 4213.0 235.1 4448.1 19.3375 7.2950 18.7798 
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7 20 3 150 9304.0 382.3 9686.3 9297.0 373.8 9670.8 0.0752 2.2413 0.1607 
8 20 3 150 5284.0 324.8 5608.8 4280.0 296.1 4576.1 19.0008 8.8503 18.4130 
9 30 3 70 13393.0 479.9 13872.9 13391.0 478.9 13869.9 0.0149 0.2181 0.0220 

10 30 3 70 7312.0 328.0 7640.0 6294.0 300.0 6594.0 13.9223 8.5131 13.6901 
11 30 3 150 14519.0 657.5 15176.5 13498.0 632.3 14130.3 7.0322 3.8211 6.8931 
12 30 3 150 6407.0 434.3 6841.3 5389.0 408.3 5797.3 15.8889 5.9822 15.2600 
13 50 5 70 24651.0 806.1 25457.1 24636.0 788.9 25424.9 0.0608 2.1307 0.1264 

14 50 5 70 12502.0 538.9 13040.9 9362.0 366.9 9728.9 25.1160 31.9103 25.3967 
15 50 5 150 26875.0 1132.1 28007.1 23802.0 1018.7 24820.7 11.4344 10.0168 11.3771 
16 50 5 150 12677.0 749.4 13426.4 9532.0 547.2 10079.2 24.8087 26.9802 24.9299 

 

 
Figure 5.1 comparative studies of ACO and ACO-VNS Resuslt 

 
Interestingly, for some solutions with a better economic cost as well as the total cost, the corresponding emission cost is 
worst. Overall, it is understood that the emission costs are much less compared to the economic cost. Hence, it can be inferred 
that the route selection decision is mainly dominated by the economic costs. Lin et al. (2014) also provides a similar 
observation while discussing the environmental analysis of a pickup and delivery problem. This optimization model is able to 
provide a direction to the routes of the classical vehicle routing problem based on the emission level. 

 
6. Conclusion 

In this work, a green-MDVRP problem is formulated. The carbon emission of the logistic network is added as a cost function 
to the routing costs for accounting the environmental impact of the supply chain. Two soft computing search procedures are 
developed to solve the discrete optimisation problem. An ACO based heuristic and a hybrid heuristic combining ACO and 
VNS are used to solve the problem near optimally. The algorithms are tested on randomly generated problem instances. The 
hybridisation provides significant improvement in the solutions. Based on the computational study, the results are found to be 
consistent over the test data.  The computational results in this work provide guidelines for environmentally conscious and 
responsible route selection decisions.  
   In the current work, the study is limited to the carbon emissions. Future work can be conducted by considering other GHG 
emissions, noise levels and so on. The multi-objective scenarios where the decision maker wants a portfolio of solutions will 
be an interesting extension to the current study. Furthermore, the work can be extended for measuring carbon footprint of the 
supply chain network, life cycle assessment for supply chains, designing emission restricted routes, environment governance 
decisions and environmental tax calculations. 
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