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Executive Summery 
Managing the price risk using instruments like futures and options and hedging effectiveness has become an interesting area 
of study for the investors, policy makers, researchers and academicians.  Since the Indian derivatives market is new and the 
volumes in this market are increasing at an increasing rate, it is important and interesting to analyze the utility of derivatives 
as a hedging instrument. The study of hedging effectiveness is important because the success of any capital market depends 
on how effectively risk can be using the available instruments in the derivatives market.  In this study we have estimated 
constant and time varying hedging ratios for stock derivatives market taking in to NSE Nifty spot and its futures contracts. We 
use intraday data observed at one minute interval of six months from 1 January 2014 to 30 June 2014. We use OLS and 
VECM models for constant hedge ratios and Generalized Autoregressive Conditional Heteroscedasticity model (GARCH) for 
time varying hedge ratio. Stationarity tests reveal that the price series are non-stationary and return series are stationary. 
Among the constant hedge ratio models VECM gives highest hedge ratio (0.8824). The hedge effectiveness of this model is 
approximately 82%. The D-Vech GARCH model gives highest hedging effectiveness, though the average hedge ratio of this 
model is lesser than (0.8537) constant hedge ratios. Therefore, our study concludes that time varying hedging models are 
preferable than the constant hedge ratios.  

Price risk management is the primary function of derivatives. Several price risk management techniques have been evolved 
over the years and their applicability is still debatable. This study deals with constant and dynamic hedging models using 
intraday day data from spot and derivatives market of National Stock Exchange of India Ltd. (NSE) Nifty index. The OLS, 
VECM and D-VECH GARCH models are used for estimation of constant and dynamic hedge ratios. We compare the 
performance of these hedge ratios. This study found that dynamic hedge ratios are preferred as they provide highest hedging 
effectiveness. 

Key Words: Derivatives, NSE-Nifty, Hedge ratio, Price risk management, hedging effectiveness, VECM. 

 
1. Introduction 

Managing the financial risk has become an important issue due to the volatile financial and economic environment.  
Therefore, hedging the risk helps financial market participants to protect their positions against the unexpected price 
movement in the market.  Hedging is harmonizing the positions in the two markets, one in the spot or cash market and the 
other in the derivatives market. With a variety of products in the financial market, various hedging techniques such as futures, 
forwards, options etc have been developed in the market. Futures contracts, like any other hedging technique, can be used as 
an effective instrument to cover the unexpected fluctuations in the prices. Hedging with futures contracts involves purchase 
(sale) of futures in combination with another commitment, usually with the expectation of favourable change in relative prices 
of spot and futures market (Castelino, 1992).  Since the objective of hedging is to control or reduce the risk of adverse price 
changes in the market, it is a critical issue to the investor to decide the number of futures contract he should buy (sell) for 
each unit of short (long) position in the spot market. This is called as the optimal hedge ratio in the derivatives market.  To 
decide the optimal hedge ratio an appropriate model selection is important so that it is possible to obtain a reliable ratio.   
   The effectiveness of a hedge becomes relevant only in the event of a significant change in the value of the hedged item 
(Kenourgios, 2008). When the price movements of the hedged item and the hedging derivative instrument nullify or offset 
each other, then hedge is termed as effective hedge. It is believed that the effectiveness of hedging determines the success of 
any financial futures contract. Hence, price volatility management through hedging has become an interesting area of research 
since the previous researches failed to give a generalised solution for the volatility problem.  
   A number of studies have measured the hedging effectiveness using the simple Ordinary Least Squares (OLS). However, 
this model is severely criticised by many authors because of its inappropriateness to estimate hedge ratios since it does not 
consider the problems of serial correlation in the OLS residuals and the heteroskedasticity in cash and futures price series 
(Herbst, Kare and Marshall, 1993). Another problem faced while estimating the hedge ratio is the nature of co-integration 
between the spot and future contract prices. As noticed by Ghosh (1993) the presence of co-integration leads to an under-
hedged position. This is because of misspecification of the pricing behaviour between these two markets (Ghosh, 1993).  
   Many empirical works have been done in the international level in the field of estimation of hedge ratio and measuring its 
effectiveness using different methodologies, asset classes and time frames. However, in Indian case, the number of researches 
in this field is limited. This is because of nascent stage of Indian derivative market. Some of the prominent Indian studies are 



Twelfth AIMS International Conference on Management  2159 
 

 

of Bhaduri and Durai (2008), Kumar, Singh and Pandey (2008), Gupta and Singh (2009), Rao and Thakur (2010), Srinivan 
(2011).  We find that estimation of hedge ratio and its efficiency is under-researched in Indian context. With this back ground 
an attempt has been made to compute the hedge ratio and to test the hedging effectiveness using different models.   
This paper is organized in six sections.  The second section discusses the important studies in this area, section 3 explains data 
and models used in the study for estimating the hedge ratio and hedging effectiveness, section 4 presents the details of the 
sample and data used for the study and its characteristic features; empirical results are presented in section 5 and section 6 
concludes.  
 

2. Review of Literature  
Literature on hedging offers a wide variety of alternative models that can be used to model and quantify the hedge and hedge 
effectiveness of derivatives products. However, the results on the performance of these models have been mixed. We present 
a brief review of some important studies under two subsections such as international studies and Indian studies respectively.  
 
2.1 International Studies 
Early investigation of hedging includes Ederington (1979). He examines the hedging performance of Government National 
Mortgage Association (GNMA) and T-Bill of Chicago Board of Trade.  He used nearby contracts (3–6 months, 6–9 months 
and 9–12 months) and a hedging period of 2 and 4 weeks for the study. Using OLS he found that some of the hedge ratios are 
not different from zero and the hedging effectiveness increases with the length of hedging period. The hedge ratio also 
increases (closer to unity) with the length of hedging period.  
   Figlewski (1984) studied the hedging performance and basis risk using US stock data over the period June 1982 to 
September 1983. He found that the minimum variance hedge ratio (MVHR) give the most effective hedge. The comparison of 
hedge effectiveness over the time periods, he concluded that one-week hedges perform better than the overnight hedges but 
no improvement was found when the duration is extended to 4 weeks. His study found that exclusion of dividend does not 
have any impact over the hedge performance. Similarly, timing of the expiration of the futures has little impact on hedge 
performance. Junkus and Lee (1985) tested the hedging effectiveness of three USA stock index futures; Kansas City Borad 
of trade, New York Futures Exchange and Chicago Mercantile Exchange; using four futures hedging models such as, a 
variance-minimizing model introduced by Johnson (1960), the traditional one to one hedge, a utility maximization model 
developed by Rutledge (1972), and a basis arbitrage model suggested by Working (1953). They found that the MVHR was 
most effective at reducing the risk of a cash portfolio comprising the index underlying the futures contract. Lee, Bubnys and 
Lin (1987) tested the temporal stability of the minimum variance hedge ratio. They found that the hedge ratio increases as 
maturity of the futures contract nears.  
   Cecchetti, Cumby and Figlewski (1988) derived the hedge ratio by maximizing the expected utility. A third-order linear 
bivariate ARCH model was used to get the conditional variance and covariance matrix. A numerical procedure is used to 
maximize the objective function with respect to the hedge ratio. It was found that the hedge ratio changes over time and is 
significantly less than the MV hedge ratio (which also changes over time). Certainty equivalent is used to measure the 
effectiveness. They concluded that utility-maximizing hedge ratio performs better than the MV hedge ratio. 
   Myers and Thompson (1989) generalized the estimation of optimal hedge ratios to account for conditioning information 
that is available at the time a hedging decision is made. The authors argue that the traditional approach of using a simple 
regression of cash price levels on futures price levels or cash price changes on futures price changes are correct only under a 
very restrictive set of assumptions. They suggested a regression approach, where the cash price level is regressed against the 
futures price level plus a set of conditioning variables. The conditioning variables include lags of futures and cash prices and 
any variables thought to influence prices such as stocks, exports, and storage costs. In an example using corn and soybeans, 
the authors show that the generalized optimal hedge ratio can vary substantially from the unconditional ratio estimated with 
price levels; but, they argue that the unconditional hedge ratio estimated with price changes may provide a reasonable 
estimate of the generalized hedge ratio.  
   Baillie and Myers (1991) investigated the distribution of cash and futures prices for six different commodities, and applied 
the results to the problem of estimating the optimal futures hedge ratio. Six different commodities are examined using daily 
data over two futures contract periods. Bivariate GARCH models of cash and futures prices are estimated. This study found 
that constant hedge ratios are inappropriate since time varying hedge ratios estimated through the GARCH Model are more 
appropriate and advanced hedge ratios.    
   Ghosh (1993, 1995) argued that the minimum variance hedge ratios are biased downwards due to misspecification. Author 
opines that the standard OLS approach is not well specified in estimating hedge ratios because it ignores lagged values. He 
suggested that if the spot and futures are co-integrated, an error correction term (ECT) should be used to remove the 
misspecification in the regression. His studies proved the superiority of error correction model over OLS model for estimating 
the hedge ratios. Chou, Denis and Lee (1996) estimated and compared the hedge ratios of the conventional and the error 
correction model for Japan’s Nikkei Stock Average (NSA) index and the NSA index futures with different time intervals for 
the period 1989 to 1993. Examining an out-of-sample performance, they found that the error correction model outperformed 
the conventional approach, while the opposite position holds when the in- sample portfolio variance was evaluated.  
   Holmes (1996) examines hedging effectiveness for the FTSE-100 Stock Index futures contract from 1984 to 1992 for 
intervals of one, two and four weeks. He investigates the appropriate econometric technique to use in estimating minimum 
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variance hedge ratios by undertaking estimations using OLS, an ECM and GARCH. He found that simple OLS outperforms 
more complex econometric techniques. Additionally, the study examines the impact of hedge duration and time to expiration 
on estimated hedge ratios and hedge ratio stability over time. It is found that hedge ratios and hedging effectiveness increase 
with hedge duration, hedge ratios approach unity as expiration approaches and while hedge ratios vary over time they are 
stationary. Lypny and Powalla (1998) examined the hedging effectiveness of the German stock index DAX futures and 
showed that the application of a dynamic hedging strategy based on a GARCH (1, 1) process is economically and statistically 
the most effective model. 
   Kavussanos and Nomikos (1999) studied constant vs. time-varying hedge ratios and hedging efficiency in the Baltic 
International Financial Futures Exchange (BIFFEX) market. The authors modeled the spot and futures returns as a vector 
error correction model (VECM) with a GARCH error structure. An augmented GARCH (GARCH-X) model where the error 
correction term enters in the specification of the conditional covariance matrix is also introduced to link the concept of 
disequilibrium (as proxied by the magnitude of the error correction term) with that of uncertainty (as reflected in the time 
varying second moments of spot and futures prices). In- and out-of-sample tests are employed to assess the effectiveness of 
the futures contract. The tests revealed that GARCH-X model provides greater risk reduction than a simple GARCH and a 
constant hedge ratio. Park and Switzer (1995) examined the risk-minimizing futures hedge ratio for three stock index 
futures, S&P 500 Index Futures, Major Market (MM) Index Futures and Toronto 35 Index Futures. Using a bivariate co-
integration model with a generalized ARCH error structure they estimated optimal hedge ratio as a ratio of the conditional 
covariance between spot and futures to the conditional variance futures. Both within sample comparisons and out-of-the 
sample revealed that the dynamic hedging strategy based the bivariate GARCH model improves the hedging performance 
over the conventional constant hedging strategy. 
   Malliaris and Urrutia (1991) estimated the minimum variance hedge ratio using regression auto correlated errors model 
for five currencies such as British pound, German mark, Japanese yen, Swiss franc, Canadian dollar. Using overlapping 
moving windows, the MV hedge ratio and hedging effectiveness are estimated for both in-sample and out-of-sample cases for 
the time period from March 1980 to December 1988 (weekly data). In the in-sample case, the 4-week hedging horizon is 
more effective compared to the 1-week hedging horizon. However, for the out-of-sample case the opposite is found to be true.  
Benet (1992) using weekly data for Australian dollar, Brazilian Cruzeiro, Mexican Peso, South African Rand, Chinese Yuan, 
Finish Markka, Irish Pound and Japanese Yen studied direct and cross-hedging. For minor currencies, the cross-hedging 
exhibits a significant decrease in performance from in-sample to out-of-sample. The minimum variance hedge ratios are 
found to change from one period to the other except for the direct hedging of Japanese Yen. On the out-of-sample case, he 
reports that the hedging effectiveness is not related to the estimation period length. However, he found that the effectiveness 
decreases as the hedging period length increases.  
   Kroner and Sultan (1993) combine the error-correction model with the GARCH model considered by Cecchetti et al. 
(1988) and Baillie and Myers (1991) in order to estimate the optimum hedge ratio for the five currencies (Co-integration 
heteroscedastic method). Both within-sample and out-of-sample evidence shows that the hedging strategy proposed in the 
study is potentially superior to the conventional strategies. Park and Switzer (1995b) estimated the risk-minimizing futures 
hedge ratios for three types of stock index futures: S&P 500 index futures, major market index (MMI) futures and Toronto 35 
index futures. Using a bivariate co-integration model with a generalized ARCH error structure, they estimated the optimal 
hedge ratio. Both within-sample comparisons and out-of-sample comparisons revealed that the dynamic hedging strategy 
based on the bivariate GARCH estimation improves the hedging performance over the conventional constant hedging 
strategy.  
   Lafuente and Novales (2002) studied the optimal hedge ratio under discrepancies between the futures market price and its 
theoretical valuation according to the cost-of-carry model using data from the Spanish stock index futures market. To estimate 
the optimal hedge ratio, they employ a bivariate error correction model with GARCH innovations. Ex-ante simulations with 
actual data reveal that hedge ratios that take into account the estimated, time-varying, correlation between the common and 
specific disturbances, lead to using a lower number of futures contracts than under a systematic unit ratio, without generally 
losing hedging effectiveness, while reducing transaction costs and capital requirements. Their empirical results and ex ante 
simulations indicate that hedge ratios lead into using a lower number of futures contracts than the one under a systematic unit 
ratio. 
   Butterworth and Holmes (2001) studied the hedging effectiveness of FTSE-100 and FTSE-mid250 index future contracts 
for underlying indexes and stocks of 32 investment trust companies. The results of the study showed that the future contracts 
could reduce risks of underlying index at a rate between 50 to 70%. However, the risk reduction of investment trust company 
stocks was limited with 20% at most. They also found that the OLS method performs better on the FTSE- mid 250 futures 
contract when out liers were omitted from the analysis.   
   Yang (2001) computes the optimal hedge ratios from the OLS regression model, the bivariate vector autoregressive model 
(BVAR), the error-correction model (ECM) and the multivariate diagonal Vec-GARCH Model for All Ordinary Index and 
SPI futures on the Australian market. The hedging effectiveness is measured in terms of in-sample and out-of-sample risk-
return trade-off at various forecasting horizons. The study found that the GARCH time varying hedge ratios provide the 
greatest portfolio risk reduction, particularly for longer hedging horizons. Floros and Vougas (2004) examined hedging in 
Greek stock index futures market, focusing on various techniques to estimate constant or time-varying hedge ratios. They 
used standard OLS regressions, simple and vector error correction models, as well as M-GARCH models and found that 
Greek stock index futures, M-GARCH models provide best hedging ratios.  
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2.2 Indian Studies 
Since derivatives are introduced in Indian market in 2000s, this market is yet to be studied in depth. A few authors tried to 
analyze the risk minimizing capacity of derivatives through hedging.    
   Rao and Thakur (2008) studied of hedging of Nifty price risk through index futures and options using high frequency data 
for the period from 01.01.2002 to 28.03.2002. They find that estimates of optimal hedge ratio based on competing models, 
HKM in case of futures (Herbst, Kare and Marshall, 1993) and fBM in case of options are better than those estimated using 
benchmark models (JSE (Johnson, 1960; Stein, 1961; and Ederington, 1979) for futures and BSM Black-Scholes model for 
options, respectively). However, the returns on hedged positions using the superior optimal hedge ratios are not significantly 
different.  
   Bhaduri and Durai (2008) investigated the optimal hedge ratio and hedging effectiveness of S&P CNX Nifty index futures 
by employing four models such as OLS, VAR, VECM and multivariate GARCH model. Their results revealed that the time 
varying M-GARCH performs better in the long run where as OLS is best in the short duration. Similar study was conducted 
by Kumar, Singh and Pandey (2008) by including Nifty index and three commodities.  Their results revealed that time 
varying hedge ratio performs better than the constant hedge ratios. Kumar and Pandey (2011) examines hedging 
effectiveness of four agricultural (Soybean, Corn, Castor seed and Guar seed) and seven non-agricultural (Gold, Silver, 
Aluminium, Copper, Zinc, Crude oil and Natural gas) futures contracts traded in India. They applied VECM and CCC-
MGARCH model to estimate constant hedge ratio and dynamic hedge ratios respectively. Their study concluded that 
agricultural futures contracts provide higher hedging effectiveness (30-70%) as compared to non-agricultural futures (20%). 
The results were same for both constant and dynamic hedge ratios. Gupta and Singh (2009) estimated the optimal hedge 
ratio for the Indian derivatives market through the examination of three indices viz. Nifty, Bank Nifty and CNX IT, and 84 
most liquid individual stock futures traded on National Stock Exchange of India Ltd. The results suggested that hedge ratio 
calculated through VAR model and VEC Model performs better and this is due to presence of co-integration between spot 
and futures markets. Srinivasan (2011) found that empirical results for the in-sample hedging performance comparison 
showed that the conventional OLS regression method generates better than VAR, VEC and GARCH in terms of variance 
reduction. His study found that VEC Model outperformed the other hedging models for the out-of–sample period in terms of 
minimizing the risk.  Kumar (2012) studied the volatility and hedging behaviour of four notional commodity futures indices 
of Multi Commodity Exchange (MCX) of India using 2175 observations from 6/8/2005 to 8/18/2012.  Models like DVECH-
GARCH, BEKK- GARCH, CCC-GARCH and DCC-GARCH were used to estimate the time varying hedge ratio. Further, an 
in-sample performance analysis, in terms of hedged return and variance reduction approaches, of the hedge ratios estimated 
from the different bivariate GARCH models are also carried out. This study found that all the models are able to reduce the 
exposure to spot market as perfectly as possible in comparison with the unhedged portfolio and in doing so the advanced 
extensions of bivariate GARCH models viz DCC-GARCH and CCC-GARCH have a clear edge over DVECH-GARCH and 
BEKK-GARCH. 
   The above discussion about literature shows that the results of the evaluating hedging performance of futures markets 
seemed to be ambiguous. With this back ground, our study emphasizes on determining the optimal hedge ratio and hedging 
effectiveness for the futures in India by taking NSE Nifty spot and futures.  
 

3. Data, Sample and Methodology 
NSE is the prime stock exchange in India with maximum transparency and regulatory framework. NSE recorded an 
exponential growth in its derivatives segment in a very short time span of a decade. Approximately 92 percent of total trading 
value of NSE came from the derivative segment in the year 2013-14(NSE fact book-2014 p 03). Currently NSE offers variety 
of derivatives instruments including stock and index futures and options and currency futures. NSE-Nifty is one of the 
important indices of NSE which includes fifty prominent stocks of Indian capital market. NSE-Nifty is treated as a major 
indicator of Indian economy. Therefore, we consider the NSE-Nifty index for this study. We use intraday data of Nifty spot 
and futures, recorded at one minute interval for the period from 01/01/2014 to 30/01/2014. A time series is constructed using 
the near month data and hence there are 45840 observations in spot and futures price series individually. Near month data is 
used as the market is more active in the month of contract expiry than the other months. We use three different methods for 
estimating the hedge ratio and hedging effectiveness. First two models estimate the constant hedge ratio and the third model 
estimates the time variant hedge ratio.  A brief discussion of these models is given below,  
 
3.1 Ordinary Least Square (OLS) Method 
OLS is treated as the simple conventional method for calculating the constant hedge ratio which is given by the following 
linear regression model, 
 
௦௧݊ݎݑݐܴ݁ = (ߙ)	ݐ݊ܽݐݏ݊ܥ + ݎݑݐܴ݁ߚ ݊௨௧௨௦ + ௧ߝ  (1) 

   Here the value of ߚ provides the optimal hedge ratio. That is, it is the ratio of covariance between spot and futures returns 
and variance of spot returns. The coefficient of determination (ܴଶ)	of the model indicates the hedging effectiveness. Higher 
the ܴଶmore efficient will be the hedge ratio and vice versa.  
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3.2 The Vector Error Correction Model 
The OLS method is criticised for not considering the existence of autocorrelation in the residuals (E.g. Myers and Thompson, 
1989; Cecchetti, Cumby and Figlewski, 1988 etc.). If two or more sets of series are co-integrated, then there exists a valid 
error correction representation (Engle and Granger, 1987). This is also confirmed by Ghosh (1993), Lien and Luo (1994); 
Lien (1996) etc. The error correction framework is shown in the models (2) and (3) below. 
 
 Rୱ୲ = ௌߙ + ∑ ௌܴ௦௧ିߚ + ∑ ிܴி௧ିߛ +

ୀଶ

ୀଶ  ௌ௧ (2)ߝ+ௌܼ௧ିଵߣ

 
R୲ = ிߙ + ∑ ிܴி௧ିߚ + ∑ ௌܴௌ௧ିߛ + ிܼ௧ିଵߣ + ி௧ߝ

ୀଶ

ୀଶ  (3) 

 
   Where the α, ௌߚ	 , ிߚ	 ୗߛ ,  and ߛ  are parameters and residuals ߝௌ௧  and ߝி௧  are independently identically distributed (iid) 
random vector. ܼ௧ିଵ = ௧ܵିଵ −  as co - integrating vector.   Once the residual (ߜ -1) ௧ିଵ is the error correction term withܨߜ
series are generated, hedge ratio is calculates as follows,  
 
ℎ∗ = 	

ఙೞ
ఙ

 (4) 

 
Where, h*= 	ℎ݁݀݃݁	ߪ , ݅ݐܽݎ௦ = ௌ௧ߝ)ݒܥ , ߪ	ி௧) andߝ =  .(ி௧ߝ)	ݎܸܽ
 
3.3 The Vech GARCH Model 
Bollerslev, Engle and Wooldridge (1988) proposed a Vech GARCH model to estimate the time varying hedge ratios. The 
main advantage of this model is that it simultaneously models the conditional variance and covariance of two integrated 
series. In the Vech model, every conditional variance and conditional covariance is a function of all lagged conditional 
variances and co-variances, as well as lagged squared returns and cross-products of returns. A common specification of the 
vech model is, 
 
ܸ݁ܿℎ	(ܪ௧) = ܿ + ′௧ିଵߌ௧ିଵߌ)	ℎܿ݁ݒ	ܣ ) +  (5) (௧ିଵܪ)	ℎܿ݁ݒ	ܤ
 

 (௧ܪ,0)ܰ~௧|߰௧ିଵߌ
 
   Where ܪ௧ is a 2 X 2 conditional variance- covariance matrix, ߌ௧ is a 2X1 error (disturbance) vector, ߰௧ିଵ represents the 
information set at time t-1. C is a 3X1 parameter vector, A and B are 3X3 parameter matrices and vech denotes the column-
stacking operator applied to the upper portion of the symmetric matrix. The model requires the estimation of 21 parameters. 
The above vech model is elaborated with the following sub set of models for better understanding.  
 

௧ܪ = ℎଵଵ௧ ℎଵଶ௧
ℎଵ௧ ℎଵଵ௧

൨ ௧ߌ, = 	 ቂ
ଵ௧ݑ
ଶ௧ቃݑ ܥ, = 	 

ଵଵܥ
ଶଵܥ
ଷଵܥ

൩,  

 

A = 
ܽଵଵ ܽଵଶ ܽଵଷ
ܽଶଵ ܽଶଶ ܽଶଷ
ܽଷଵ ܽଷଶ ܽଷଷ

൩ ܤ, = 	 
ܾଵଵ ܾଵଶ ܾଵଷ
ܾଶଵ ܾଶଶ ܾଶଷ
ܾଷଵ ܾଷଶ ܾଷଷ

൩      

 
   The Vech operator takes the upper triangular portion of a matrix and stacks each element into vector with a single column. 
For example, in the case of vech (ܪ௧), this becomes  
 

Vech (ܪ௧)	= 
ℎଵଵ௧
ℎଶଶ௧
ℎଵଶ௧

൩  

 
   Where ℎ௧ 	 represent the conditional variances at time t of the two-asset return series used in the model and ℎ௧	(݅ ≠ ݆) 
represent the conditional co-variances between the asset returns. In the case of vech (ߌ௧ߌ௧′ ), this can be expressed as  
 
′௧ߌ௧ߌ)	ℎܿ݁ݒ ) = 	ℎܿ݁ݒ ቀቂ

ଵ௧ݑ
ଶ௧ቃݑ

ଵ௧ݑ]  ଶ௧]ቁ (6)ݑ
 

3.4 = 	ℎܿ݁ݒ ൬ ଵ௧ଶݑ ଶ௧ݑଵ௧ݑ
ଶ௧ݑଵ௧ݑ ଶ௧ଶݑ

൰ (7) 
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= 	 
ଵ௧ଶݑ

ଶ௧ଶݑ
ଶ௧ݑଵ௧ݑ

 (8) 

 
The vech model in full given by,  
 
ℎଵଵ௧ = 	 ܿଵଵ + ܽଵଵݑଵ௧ିଵଶ + ܽଵଶݑଶ௧ିଵଶ + ܽଵଷݑଵ௧ିଵݑଶ௧ିଵ + ܾଵଵℎଵଵ௧ିଵ + ଵܾଶℎଶଶ௧ିଵ + ଵܾଷℎଵଶ௧ିଵ  (9) 
 
ℎଶଶ௧ = 	 ܿଶଵ + ܽଶଵݑଵ௧ିଵଶ + ܽଶଶݑଶ௧ିଵଶ + ܽଶଷݑଵ௧ିଵݑଶ௧ିଵ + ܾଶଵℎଵଵ௧ିଵ + ܾଶଶℎଶଶ௧ିଵ + ܾଶଷℎଵଶ௧ିଵ (10) 
 
ℎଵଶ௧ = 	 ܿଷଵ + ܽଷଵݑଵ௧ିଵଶ + ܽଷଶݑଶ௧ିଵଶ + ܽଷଷݑଵ௧ିଵݑଶ௧ିଵ + ܾଷଵℎଵଵ௧ିଵ + ܾଷଶℎଶଶ௧ିଵ + ܾଷଷℎଵଶ௧ିଵ (11) 
 
   Thus, it is clear that the conditional variances and conditional co-variances depend on the lagged value of all of the 
conditional variances of and conditional co-variances between, all of the asset returns in the series, as well as the lagged 
squared errors and the error cross-products. 
   The above mentioned vech model is quite cumbersome task as the model contains 21 parameters to estimate even if at least 
two assets are included in the sample. If the sample size increased there would be a large number of parameters to estimate 
which will become infeasible. To overcome this problem a reduced form of vech model is introduced in which the vech 
model’s conditional variance-covariance matrix has been restricted and hence reduced the number of parameters to be 
estimates is to 9. This model is called as the diagonal vech model and is expressed as follows, 
 
ℎଵଵ௧ = 	 ܿଵଵ + ܽଵଵݑଵ௧ିଵଶ + ܾଵଵℎଵଵ௧ିଵ  (12) 
 
ℎଶଶ௧ = 	 ܿଶଵ + ܽଶଷݑଵ௧ିଵݑଶ௧ିଵ + ܾଶଶℎଶଶ௧ିଵ (13) 
 
ℎଵଶ௧ = 	 ܿଷଵ + ܽଷଶݑଶ௧ିଵଶ + ܾଷଷℎଵଶ௧ିଵ (14) 
         
3.5 Hedging Effectiveness 
For estimating the effectiveness of calculated hedge ratio reductions in the variance in the hedged portfolio is compared with 
the variance reduction of un-hedged portfolio. This can be shown in the following equation,  
 

ℎܷ݁݀݃݁݀݊	݁ܿ݊ܽ݅ݎܸܽ − 		݀݁݃݀݁ܪ	݂	݁ܿ݊ܽ݅ݎܸܽ
	ℎܷ݁݀݃݁݀݊	݂	݁ܿ݊ܽ݅ݎܸܽ  

 
Where variance of un-hedged = ߪ௦ଶ  
Variance of hedged = ߪ௦ଶ + ℎଶߪଶ − 2ℎߪ௦ 
 

4. Results and Analysis 
4.1 Graphical Analysis 
The tentative inference about the behaviour and formation of the price series of Nifty spot and futures can be drawn from the 
graphical analysis. Figure 1 shows the time series plots of Nifty spot and futures prices. We can observe from the time series 
plot that the study period had seen a steep but steady increase in the price.   
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Figure 1 Time Series Plot of Nifty Spot and Futures Prices 

 
   Time series normally depicts volatility clustering or volatility persistence. Volatility clustering manifests itself as periods of 
tranquillity interrupted by periods of turbulence. The change between these two extreme regimes is a slow process so that 
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large returns slowly decline until a relatively tranquil state is reached (Modelbrot, 1963). In other words time series indicates 
phenomena in such a way that lower volatility is followed by further low volatility and higher volatility is followed by higher 
volatility. In the figure 2 we have presented the volatility clustering in both the return series of Nifty spot and futures.  
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Figure 2 Spot and Futures Return Series Plots 

 
4.2 Descriptive Statistics 
Statistical properties of the return series are presented in the table 1, where it is clear that the mean retuns of both the market 
are almost same. The variation, expressed in the standard deviation , in returns is higher in the futures market than the spot 
market. Clear non-nomality is exhibited in the high positive skewness, kurtosis and Jarque-Bera statistics. Both the return 
series show excess kurtosis implying that fatter tail than the normal distribution and are skewed to the right. 
  

Table 1 Descriptive Statistics 

 Futures Returns Spot Returns 
 Mean 3.97E-06  4.04E-06 
 Median 0.00000  6.64E-06 

 Maximum  0.042143  0.040737 
 Minimum -0.013770 -0.014712 

 Std. Dev. 0000475  0.000461 
 Skewness 15.20423 15.60912 

 Kurtosis 1409.513  1419.734 
 Jarque-Bera 3.78E+09 3.84E+09 
 Probability  0.000000  0.000000 

 Observations  45840  45840 
 

4.3 Unit Root Test  
Before performing any type of regressions, it is essential to test whether the series contains unit root or not. Presence of unit 
root implies that the time series under study has a time varying mean or time varying variance or both. The series which 
contain unit root are called as non –stationary series. If we regress two or more non - stationary series the results would be 
spurious. In such a case, it becomes necessary to remove the unit root either by differencing the series or by taking log series 
before further econometric analysis.  
   The Augmented Dickey-Fuller (1979) and Philips-Perron (1988) are two popularly used stationarity tests in the financial 
literature. These tests are known for their simplicity and accuracy in estimating the degree of differencing necessary to make 
the series stationary. The results of these tests indicate in which form the data series should be used for subsequent 
estimations (Eg. At level, first or second difference form). We present the unit root test results in the table 2. We separately 
show the test statistics and the probability values for the price series and the return series. The required numbers of lags are 
selected based on the Schwartz’s Bayesian information criterion (SIC). It is very clear from the table that price series are non-
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stationary and return series are stationary for both spot and futures market. This guides us that we can use the return series 
than the price series for any further analysis.  
 

 
Table 2 Unit Root Test Results 

Variable ADF Statistics P value PP Test statistics P value 

Futures Price 0.1479(55) 0.9693 0.2383 0.9750 

Spot Price 0.1394(55) 0.9687 0.2827 0.9775 

Futures Returns -28.6124 (55) 0.0000 -213.9629 0.0001 

Spot Returns -27.6615 (55) 0.0000 -208.9116 0.0001 

Note Figures in Parenthesis Indicates Number of Lags Used  
 

Empirical Estimation of Hedge Ratio and Hedging Effectiveness 
In this section we present the results of alternatives methods used for estimation of hedge ratio and its effectiveness.  

4.4 OLS Method  
 

Table 3 OLS Results 

Symbol Coefficients t-statistics p-value 

Α 5.67E-07 0.6149 
(9.21E-07) 0.5386 

Β 0.8755 451.8877 
(0.001938) 0.0000 

R2 0.8167   

 Note Standard Error is given in the Parenthesis 
 
   Table 3 shows that the hedge ratio calculated from OLS method is 0.8755 and hedging efficiency is represented by R2 

which is 82%. To check the validity of the model used, diagnostics tests of residuals obtained from the above OLS are 
conducted and the results are presented below.  

Table 4 Diagnostic Test Results 

Diagnostic tests Test statistics P. value 
Jarque-Bera 
Null (H0) : Residuals are normally distributed 5711952 0.000 

Breusch Godfrey Serial Correlation LM Test 
Null (H0) : No serial correlation between residuals 3996.311 0.000 

White Heteroscedasticity Test: 
Null (H0 ): Residuals are homoscedactic 249.3995 0.000 

 
 
   It is very clear from the diagnostic test results of OLS that, in all three tests the null hypothesis are rejected at one percent 
level of significance.  This shows that the model suffers from the problem of serial correlation, heteroscedasticity and non-
normality. Since the results are spurious, they cannot be used for further analysis and decision making. Therefore, we estimate 
the hedge ratio using a bivariate VECM model which is discussed in the next section. 

 
4.5 VEC Model Results 
An augmented VAR model with error correction term as one of the independent variables is used to capture the long run as 
well as the short run relationship simultaneously as simple VAR model ignores the possibility that the two variables have 
long run relationship or the existence of co-integration. If the two price series are found to be co-integrated, a VAR model 
should be augmented using an error correction term which accounts for the long run equilibrium between spot and futures 
price movement (E.g. Gosh (1993), Lien and Luo (1994) and Lien (1996).  First, we use Johansen’s co-integration test to 
examine the long-run relationship (co-integration) between spot and futures market. The results are presented in the table 5. 
Johansen’s maximum eigen value and trace statistics indicate that at least one co-integrating vector is present at 0.05 level in 
the Nifty spot and its derivatives.  

Table 5 Test for Co-integration  

Hypothesis Eigen value Trace test p-value L max test p-value 
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None (r = 0) 0.223466 20481.20 0.0001 11592.36 0.0001 
At most 1 
( r	≥1) 0.176285 8888.834 0.0000 8888.834 0.0000 

 
   Since the co-integration is present between the two markets we use error correction term to the VAR model, so that any 
disequilibrium will be normalised. A VECM (6, 1) is used for our analysis where 6 denotes the maximum lags which is 
selected based SIC and 1 denotes the rank order. The VECM results are presented in table 6 and 7 for futures and spot market 
respectively.  
 

Table 6 Estimates of VEC Model for Futures Market 

Symbol Coefficient Std. Error t-Statistic Probability 
 ி 0.0000 0.0000 1.8321 0.0669ߙ

 ி -0.0490 0.0189 -2.5950 0.0095ߣ

 ிଵ -0.9367 0.0185 -50.5702 0.0000ߛ

 ிଶ -0.8594 0.0163 -52.8128 0.0000ߛ

 ிଷ -0.6964 0.0150 -46.3474 0.0000ߛ

 ிସ -0.5051 0.0123 -41.0616 0.0000ߛ

 ிହ -0.3223 0.0091 -35.4147 0.0000ߛ

 ி -0.1491 0.0061 -24.5760 0.0000ߛ

 ௌଵ 0.0859 0.0200 4.2841 0.0000ߚ

 ௌଶ 0.1331 0.0176 7.5613 0.0000ߚ

 ௌଷ 0.1018 0.0158 6.4483 0.0000ߚ

 ௌସ 0.0557 0.0123 4.5176 0.0000ߚ

 ௌହ 0.0052 0.0091 0.5751 0.5652ߚ

 ௌ -0.0144 0.0063 -2.2848 0.0223ߚ
 

Table 7 Estimates of VEC Model for Spot Market 

Symbol Coefficient Std. Error t-Statistic Probability 
 ௌ 0.0000 0.0000 -9.5186 0.0000ߙ

 ி 1.5446 0.0146 106.0773 0.0000ߣ

 ிଵ -1.1750 0.0144 -81.8680 0.0000ߛ

 ிଶ -0.9530 0.0122 -78.0917 0.0000ߛ

 ிଷ -0.7374 0.0109 -67.5437 0.0000ߛ

 ிସ -0.5297 0.0090 -58.6663 0.0000ߛ

 ிହ -0.3329 0.0061 -54.6581 0.0000ߛ

 ி -0.1515 0.0036 -42.1682 0.0000ߛ

 ௌଵ 0.4630 0.0154 30.0682 0.0000ߚ

 ௌଶ 0.3675 0.0132 27.7426 0.0000ߚ

 ௌଷ 0.2507 0.0119 21.1496 0.0000ߚ

 ௌସ 0.1530 0.0092 16.5581 0.0000ߚ

 ௌହ 0.0588 0.0062 9.4226 0.0000ߚ

 ௌ 0.0114 0.0038 3.0247 0.0025ߚ
 
   The coefficients of the error correction terms, ߣௌ and ߣி  in VECM (6, 1) are significant at 5% level implying that the long 
run co-integrating relationship between the spot and futures returns has been appropriately considered in VECM equations. In 
other words, the error correction co-efficient in futures equation is negative and significant, indicating that the speed of 
adjustment of spot towards long run equilibrium is significant and the difference between spot and futures prices is positive. 
The futures market will fall next period to restore the equilibrium. On the other side, the error correction co-efficient in spot 
equation is positive and significant, indicating rise in futures price towards the equilibrium in the next period. The lags of spot 
and futures markets are significant in both equations indicating mutual dependency of the two markets. This mutual 
dependency of the two markets gives important clues to the hedgers about the movement of the market in the immediate 
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future. The residuals of the VECM are used to estimate the hedge ratio and hedging effectiveness which is presented in table 
8.  
   The hedge ratio obtained from VECM model is 0.8824 which is more than that of OLS model. VECM provides 82% 
(approx) hedging effectiveness which is in line with the OLS model. Therefore, our two constant models gave two different 
hedge ratios but the effectiveness of these models are equal (82%). Since, both constant hedge ratios provide similar hedging 
effectiveness a clear conclusion can be drawn about the superiority of the models at this stage. In the next part we provide the 
results obtained from the GARCH model.  
 

Table 8 VECM Hedge Ratio Results 

Cov (ߝௌ, ߝி) 2.27E-07 
Var ߝி  2.27E-07 

Hedge ratio 0.8824 
Variance (Hedged) 3.89E-08 
Variance (Unhedged) 2.12E-07 

Hedging Effectiveness 0.8166 
 
4.6 GARCH Model  
D-Vech GARCH Model is used to estimate the time varying hedge ratio.  The resulting time varying hedge ratio is presented 
in figure 6 and summery statistics are given in the table 9.  
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Figure 3 Dynamic Hedge Ratio 

 
Table 9 Descriptive Statistics of Dynamic Hedge Ratio 

 HEDGE RATIO 
 Mean 0.8537 
 Median 0.8480 

 Maximum 4.8148 
 Minimum -0.9386 
 Std. Dev. 0.2227 
 Skewness 3.0101 

 Kurtosis 32.3165 
 Jarque-Bera 1710528 
 Probability 0.000000 

 
   As shown in the Figure 3, the dynamic hedge ratios are less stable and exhibit fluctuations.  This suggests that the hedgers 
of Nifty futures market have to adjust their futures positions more often. As reported in the table 9, the average hedge ratio for 
the study period is 0.8537 and it ranges from a minimum -0.9386 to a maximum of 4.8148.  Also a high Jarque-Bera suggests 
that the distribution of hedge ratio is not normal. Based on this time varying hedge ratio, we estimate the variances of hedged 
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and unhedged portfolio to calculate the hedge effectiveness. The estimation reports that hedging with the dynamic hedge ratio 
of Nifty futures is 83% effective. 
   Finally, a summary of hedging performance obtained by all three models is presented in table 10.  Comparison of hedge 
ratios estimated from the four models reveals all the three models give significant hedging effectiveness. As observed by 
many studies GARCH family models can perform better in estimation of time varying hedge ratios and hedging effectiveness 
and we also found that the D-Vech GARCH model provides highest hedging effectiveness.  
 

Table 10 Comparison of Hedge Ratio and Hedging Effectiveness 

Model Hedge ratio Hedging effectiveness 
Ordinary least squares 0.8755 81.67% 
Vector Error Correction 0.8824 81.67% 

D-Vech GARCH  0.8537 (Mean) 83% 
 

5. Conclusions 
Managing the price volatility by using instruments like futures and options and hedging effectiveness has become an 
interesting area of study for the investors, policy makers, researchers and academicians.  Since the Indian derivatives market 
is new and the volumes in this market are increasing at an increasing rate, it is important and interesting to analyze the utility 
of derivatives as a hedging instrument. The study of hedging effectiveness is important because the success of any capital 
market depends on how effectively risk can be reduced in using the instruments of derivatives market.  In this study, we have 
estimated the constant and time varying hedging ratios for Indian derivatives market taking into account one of the most 
active stock derivatives market i.e., NSE Nifty spot and its futures contracts. We use OLS and VECM models for constant 
hedge ratios and Generalized Autoregressive Conditional Heteroscedasticity model (GARCH) for time varying hedge ratio. 
Our study found that both time varying and constant hedge ratio models provide somewhat similar hedge ratios. As for as the 
hedging effectiveness is concerned, GARCH family model out performs the other two models. Further studies can be carried 
out including more time varying models and the results can be compared between these models.  
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