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An attempt is made to develop an inventory model for perishable items when the demand rate is a quadratic function of 
price and the rate of deterioration is a linear function of time. It is also assumed that the holding cost is a linear function 
of time. Under instantaneous replenishment with zero lead-time, EOQ is determined for optimizing the total profit under 
inflation rate. The sensitive analysis is presented with numerical example at the end. 

 
1. Introduction 

It is true that the unit price and other inventory related costs are dependent on time. However, most of the inventory models in 
the literature have considered unit price and inventory related costs to be independent of time and constant over the period 
under consideration. Buzacott [1] modified the classical EOQ model incorporating constant inflation rate under different 
pricing policies. Misra [2], Gupta et al [3], Vrat and Padmanabhan [4] are some of the authors who have studied inventory 
models with special reference to inflation rate.  
   It is well known that the demand rate of any product is always in dynamic state. This variation is due to time or price or 
even with instantaneous level of inventory. An economic lot size model for price dependent demand under quantity and 
freight discounts was developed by Burwell [5]. An inventory system of ameliorating items for price dependent demand rate 
was considered by Mondal et al [6]. You [7] developed an inventory model with price and time dependent demand. Ajanta 
Roy [8] has developed an inventory model for deteriorating items with price dependent demand and time varying holding 
cost.  
   Inventory modelers so far have considered two types of price dependent demand scenarios, linear and exponential. The 
linear price dependent demand implies a uniform change in the demand rate of the product per unit price whereas exponential 
price dependent demand implies a very high change in demand rate of the product per unit price. These two scenarios are 
quite unusual in realistic situations. Thus quadratic price dependent demand may be an alternative approach to the existing 
two scenarios. So, it is reasonable to assume that the demand rate, in certain commodities, due to seasonal variations may 
follow quadratic function of time [i.e., D(t) = a + bp + cp2; a ≥ 0, b ≠ 0, c ≠ 0 ]. The functional form given above explains the 
accelerated growth/decline in the demand patterns which may arise due to seasonal demand rate (Khanra and Chaudhuri [9]).   
We may explain different types of realistic demand patterns depending on the signs of a and b. Bhandari and sharma [10] 
have studied a Single Period Inventory Problem with Quadratic Demand Distribution under the Influence of Marketing 
Policies. Khanra and Chaudhuri [9] have discussed an order-level inventory problem with the demand rate represented by a 
continuous quadratic function of time. Sana and Chaudhuri [11] have developed a stock-review inventory model for 
perishable items with uniform replenishment rate and stock-dependent demand. Kalam et al [12] have studied the problem of 
production lot-size inventory model for Weibull deteriorating item with quadratic demand, quadratic production and 
shortages. An order level EOQ model for deteriorating items in a single warehouse system with price depended demand in 
non-linear (quadratic) form has been studied by Patra et al [13]. Venkateswarlu and Mohan [14] studied inventory model for 
time varying deterioration and price dependent quadratic demand with salvage value.   Venkateswarlu and Reddy [15] 
developed time dependent quadratic demand inventory model under inflation. Recently, Venkateswarlu and Reddy [16] 
studied inventory models when the demand is time dependent quadratic demand and the delay in payments is acceptable.  
In this paper, we try to develop an integrated model which contains both the perishability and inflation phenomena with price 
dependent quadratic demand situation. The inventory deterioration is assumed to be constant. The solutions of the models are 
presented and also discussed the sensitivity of the models at the end. 

 
2. Assumptions and Notations 

The mathematical model is developed on the following assumptions and notations: 
i) The Selling rate D(p) at time t is assumed to be ,0,0,)( 2  bacpbpapD .0c  Where, ‘a’ is the initial 

rate of demand ‘b’ is the rate with which the demand rate increases and ‘c’ is the rate with which the change in the rate 
demand rate itself increases.  

ii) Replenishment rate is infinite and lead time is zero. 
iii) p is the selling price per unit. 
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iv) The rate of inflation is constant 
v) The unit cost and other inventory related cost are subjected to the same rate of inflation, say k. This implies that the 

ordering quantity can be determined by minimising the total system cost over the planning period. 
vi) A(t) is the ordering cost at time t. 
vii) )10(    is the constant rate of deterioration. 
viii) C(t) denotes unit cost at time t. 
ix) I (t) is the inventory level at time t. 
x) Q(t) is the ordering quantity at time t=0    
xi) ‘h’ is per unit holding cost excluding interest charges per unit per year. 
 

3. Formulation and Solution of the Model 
The objective of the model is to determine the optimum profit for items having price dependent quadratic demand and the rate 
of deterioration follows a linear function of time with no shortages. 
   The inventory level depletes as the time passes due to demand and deterioration during (0,t1) and due to demand only 
during the period (t1, T). 
   If I(t) be the inventory level at time t, the differential equations which describes the inventory level at time t are given by  
 

1
2 0),()(..)( ttcpbpatIt

dt
tdI

 
      (1) 

Tttcpbpa
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2 ),()(
                        (2)

 

Together with I(t1)=0 and I(T)=0.  
 
The solution of equations (1) and (2) 
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Let )(tC  denotes the unit cost at time t . 

 i.e.,
kteCtC 0)(   where 0C is the unit cost at time zero. 

 
Let )(tA  denotes the Ordering cost at time t . 

 i.e.,
kteAtA 0)(   where 0A is the ordering cost at time zero. 

  
   Total system cost during the planning period ‘ ’ is the sum of the Material cost, ordering cost and Carrying cost. Assume 
that   = m*T, Where ‘m’ is an integer for the number of replenishments to make during the period’ ’, and ‘T’ is time 
between replenishments. 
   The Ordering cost during the period (0, ) is 
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 The Material cost during the period (0, ) is 



Twelfth AIMS International Conference on Management  1403 

 

])1(..................)3()2()()0([ TmCTCTCTCCQ   
].........[ )1(

0
)3(

0
)2(

0
)1(

0
)0(

0
kTmkTkTkTkT eCeCeCeCeCQ   

).........1( )1(32
0

kTmkTkTkT eeeeQC   













1
1

0 kT

k

e
eQC



 

Similarly, The Carrying Cost/holding cost during the period (0, ) is 
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The Carrying Cost/holding cost is 
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The total cost over the period (0, ) is 
 
= Ordering cost + Material cost + Carrying cost 
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If shortages are not allowed then the Sales revenue per cycle is given by  
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The total profit is maximum if   0)),((,0)),((
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   The Optimal value of T is obtained solving equation f (p, T) by MATHCAD 
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Also satisfying the following condition 
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It is found that the optimality conditions are satisfied for the following two cases viz., 
(i) b < 0 and c > 0 which gives retarded growth in demand model 
(ii) b < 0 and c < 0 gives accelerated decline in demand model  
 
3.1 Numerical Example 
To demonstrate the effectiveness of the models developed, a numerical example is taken with the following values for the 
parameters.  
 a =150,  b = 5,   c =0.01,  A0 = 250,  
 C0=4,   θ =0.1,  i = 0.05, k = 0.04 
   The MATHCAD output is presented in Table-1 and Table-2 which contains the optimum values of time (T), ordering 
quantity (Q) and total profit f(p,T) of the system for various values of inflation parameter (k) and deterioration parameter (θ).  
These tables provide certain important insights about the problem under study. Some observations are as follows: 
   The behaviour of both the models developed here is almost similar in nature but the rate of change is slightly different. The 
optimal values of cycle time, ordering quantity and total cost increases with an increase in the inflation rate parameter ‘k’.  
For some particular values of θ, when the inflation rate k increases from 0.05 to 0.10, the cycle time and ordering quantity 
increases while the total profit f(p,T) also increases in both the models. 
   For some particular values of k, when θ increases from 0.05 to 0.10, the cycle time and ordering quantity decreases whereas 
total profit f(p,T) increases in both the models. 
 
3.2 Sensitive Analysis 
We now study sensitivity of the models developed to examine the implications of underestimating and overestimating the 
parameters individually and all together on optimal value of cycle time, ordering quantity and total system profit. The results 
are shown in Table-3 and Table-4.  The following observations are made from these two tables: 

(i) The ordering quantity (Q), the unit price (p) and the total system profit f(p,T) increases (decreases) with the increase 
(decrease) in the value of the parameter ‘a’ where as the cycle time (T) is inversely related with the parameter ‘a’. 

(ii) Increase (decrease) in the values of the parameters ‘b’ and ‘c’ decrease (increase) the price per unit, ordering 
quantity and the total profit f(p,T) while the cycle time increases (decreases) with ‘b’ and decreases (increases) with 
‘c’. However the rate of increase/decrease is marginal in case ‘p’ and ‘T’. 

 The ordering quantity (Q), the unit price (p), and the total system profit f(p,T) increases (decreases) with the decrease 

(increase) in the value of the parameters ‘ ’ and ‘C0’. 
(iii) The optimum value of the total profit, ordering cost and cycle time is marginal but the unit price remain constant to 

the changes in the parameters A0 
(iv) The total profit of the system is more sensitive than the cycle time and ordering quantity when the values of all 

parameters are under-estimated or over-estimated by 15%. 
 

Table 1 Retarded Growth Model (I.E., A>0, B<0 and C>0) 

S.No a b c k p T f(p, T) Q 
1 150 -5 0.01 0.05 15.787 9.158 1008 2050 
2 150 -5 0.01 0.06 15.785 9.295 1009 2117 
3 150 -5 0.01 0.07 15.784 9.445 1009 2192 
4 150 -5 0.01 0.08 15.782 9.612 1010 2279 

5 150 -5 0.01 0.09 15.780 9.801 1011 2380 
6 150 -5 0.01 0.10 15.778 10.017 1011 2499 
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Table 2 Retarded Decline Model (I.E., A>0, B<0 and C<0) 

S.No a b c k p T f(p, T) Q 
1 150 -5 -0.01 0.05 14.421 9.136 978.360 1980 
2 150 -5 -0.01 0.06 14.419 9.271 978.956 2044 

3 150 -5 -0.01 0.07 14.417 9.421 979.550 2129 
4 150 -5 -0.01 0.08 14.416 9.587 980.141 2200 

5 150 -5 -0.01 0.09 14.414 9.774 980.730 2297 
6 150 -5 -0.01 0.1 14.412 9.988 981.316 2411 

 
Table 3 Retarded Growth Model (A>0, B<0 And C>0) 

Parameters % change Change in p (%) Change in T (%) Change inf (pct.) (%) Change in Q (%) 

a 

-15% -15.6078 1.375846 -24.6693 -21.8049 

-5% -5.23215 0.414938 -8.21538 -7.21951 
5% 5.263825 -0.38218 8.234127 7.121951 

15% 15.87382 -1.04826 24.70238 21.31707 

b 

-15% 20.05448 0.054597 9.52381 9.414634 
-5% 5.846583 0.010919 3.174603 3.121951 
5% -5.20682 -0.01092 -3.16954 -3.12195 

15% -14.0812 -0.03276 -9.53165 -9.41463 

c 

-15% -0.76645 -0.02184 -0.19841 -0.29268 
-5% -0.25971 -0.01092 -0.09921 -0.09756 
5% 0.266042 0.010919 0.099206 0.097561 

15% 0.798125 0.021839 0.198413 0.243902 

C0 

-15% -0.03801 1.397685 0.793651 3.073171 

-5% -0.01267 0.414938 0.297619 0.878049 
5% 0.012669 -0.38218 -0.19841 -0.82927 

15% 0.04434 -1.05918 -0.69444 -2.29268 

  

-15% -0.08868 6.693601 0.099206 4.682927 
-5% -0.03167 2.096528 0 1.512195 
5% 0.031672 -1.98733 0 -1.5122 

15% 0.088681 -5.6235 -0.09921 -4.29268 

A0 

-15% 0 -1.23389 0.396825 -2.63415 
-5% 0 -0.40402 0.099206 -0.87805 

5% 0 0.404018 -0.09921 0.878049 
15% 0 1.190216 -0.29762 2.585366 

All 

-15% -0.12035 8.113125 -14.2977 -8.43902 
-5% -0.03801 2.522385 -4.72877 -2.68293 

5% 0.04434 -2.36951 4.761905 2.536585 
15% -15.6078 1.375846 14.0873 7.414634 

 
Table 4 Retarded Decline Model (A>0, B<0 and C<0) 

Parameters % change Change in p (%) Change in T (%) Change in f (pct.) (%) Change in (%) 

a 

-15% -4.79856 0.415937 -25.4286 -22.5253 

-5% 4.777755 -0.3831 -8.47623 -7.42424 

5% 14.27779 -1.06173 8.446789 7.373737 
15% 15.85188 -0.04378 25.41396 22.0202 

b -15% 4.798558 -0.01095 9.877755 9.494949 
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-5% -4.39637 0.010946 3.233983 361.3636 
5% -12.1489 0.021891 -3.27742 -3.18182 

15% 0.603287 0.010946 -9.83237 -9.54545 

c 

-15% 0.194161 0 0.228137 0.252525 
-5% -0.2011 -0.01095 0.076046 0.10101 
5% -0.58942 -0.02189 -0.07605 -0.10101 

15% -0.04161 1.368214 -0.22814 -0.25253 

C0 

-15% -0.01387 0.404991 0.75463 3.030303 
-5% 0.013869 -0.3831 0.251543 0.909091 

5% 0.041606 -1.03984 -0.25154 -0.80808 
15% -0.09708 6.698774 -0.75463 -2.22222 

  

-15% -0.03467 2.101576 0.071242 4.69697 

-5% 0.027737 -1.98117 0.023713 1.565657 

5% 0.090146 -5.63704 -0.02371 -1.46465 
15% 0 -1.20403 -0.07114 -4.29293 

A0 

-15% 0 -0.39405 0.368167 -2.57576 
-5% 0 0.394046 0.122756 -0.80808 

5% 0 1.160245 -0.12265 0.858586 
15% -0.12482 8.099825 -0.36806 2.575758 

All 

-15% -0.04854 2.517513 -14.3071 -8.43434 

-5% 0.041606 -2.36427 -4.73956 -2.67677 
5% 0.145621 -6.65499 4.66495 2.575758 
15% -4.79856 0.415937 14.06844 7.474747 
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