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The study investigates the involvement of physicians in shaping the inventory management systems in a healthcare 

setting. The physicians’ prescribing behaviour for medicines is predicted and decisions regarding when and how 

much of medicines to order under different conditions and constraints by incorporating uncertainties in medicine 

prescriptions is modelled using Markovian decision processes. As a case study, a multispecialty hospital in India is 

considered. The proposed model results in an optimal inventory control policy for medicines with patient and 

physician demand fulfillment. This complex modelling ties the satisfaction of all the major stakeholders in a 

healthcare system. 
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1. Introduction 
Physicians are heterogeneous in nature and show evidence of dynamic prescribing behaviour due to clinical uncertainty, 

variation in patient characteristics, the difference in physicians’ practicing styles, knowledge and experience, pharmaceutical 

detailing and sampling, etc. (Beam et al. 2017; Montoya, Netzer, and Jedidi 2010). As physicians decide on the appropriate 

treatment and recommend medicine dosage to be used, they are the essential generators of demand for medicines 

(Abdulsalam et al. 2018). However, many of the characteristics of physicians’ recommendation that determine the 

appropriate treatment and prescription of medicines are unobserved or partially observed (Montoya, Netzer, and Jedidi 2010; 

Rappold et al. 2011). In this study, the partially observed states correspond to prescription-behaviour states (for example, 

high prescription-behaviour state and low prescription-behaviour state). With time physicians may switch among these states 

through a Markovian process (Montoya, Netzer, and Jedidi 2010). The transitions among the states may be considered 

dependent on the patient conditions (Beam et al. 2017). It has been observed that in many instances, the inventory of 

medicines to be used may be dependent on physician dynamics (Abdulsalam et al. 2018). Hence, the impact of the physician 

dynamics on the demand process of the medicines that subsequently affects the inventory decisions of the hospital needs to 

be studied so as to access the impact of such dynamics on the inventory level over time.  

Physicians interact with the patients, diagnose them and prescribe medicines based on their diagnosis, treatment stages, 

length-of-stay and type of care unit (Beam et al. 2017; Vila-parrish, Ivy, and King 2008). The physicians also interact with the 

healthcare facility provider for making decisions related to drug formulary, storage space, availability of medicines, the 

budget allocated for medicines and service level (Abdulsalam et al. 2018; Little and Coughlan 2008). These interactions may 

influence physicians’ prescription behaviour. In addition, there are various external influencing factors, such as interactions 

with the pharmaceutical companies, and their marketing activities (for example, detailing and sampling) that leads to variation 

and uncertainty in physicians’ prescription behaviour (Montoya, Netzer, and Jedidi 2010).  

The role of the pharmacists or hospital inventory manager is to place the medication order to the pharmaceutical companies 

or suppliers based on the demand generated from the physicians for the treatment of the patient. However, the pharmacists or 

hospital inventory manager may only observe information related to the patients and healthcare facilities. They are unable to 

observe the physicians’ prescription behaviour. Therefore, for the pharmacists, the physicians’ prescription behaviour is 

hidden. This partial observation and incomplete information complicate the management of inventory of medicines in the 

healthcare systems (Arifoǧ lu and Özekici 2010a). Literature addresses different types of problems associated with inventory 

management of medicines in healthcare systems. However, very few studies and research are reported wherein the role of the 

physician in inventory management is explicitly considered.  

According to the World Health Organization, the expenditure on medicines is one of the foremost causes following the 

growth of healthcare expenditure (World Health Statistics 2018; Lu et al. 2011). To control this growth, healthcare 

policymakers promote generic medicines. It has been observed that reducing price is not enough to reduce medical 

expenditures. If physicians prescribe and patients consume more expensive medicines, it may lead to growth in 

pharmaceutical expenditures. In order to understand the causes behind the growth of pharmaceutical expenditures, it is 

imperative to investigate the progression of decisions made by physicians, patients, and pharmacists during the treatment 

process (OECD 2015).  

In a medicine inventory management system, there exist numerous causes of uncertainty and variability (Vila-Parrish et al. 

2012). Commonly, the existing literature assumes the inventory system to operate in a stationary environment (Uthayakumar 

and Priyan 2013; Gebicki et al. 2014). Nevertheless, inventory management in healthcare systems is to a certain extent 

susceptible to variations in the surrounding environment consisting of various patient conditions, heterogeneous physician 

prescription behaviour, and other factors affecting the demand of medication (Beam et al. 2017; Vila-parrish, Ivy, and King 
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2008; Vila-Parrish et al. 2012). The existing environmental conditions may vary randomly with their impact on the model 

parameters. For practical healthcare inventory models, it is apt to consider the likely outcome of various environmental 

factors on the demand, supply, and inventory-related cost parameters (Yin and Rajaram 2007).  

However, heterogeneity among physicians and the dynamics in their prescription behaviour may lead to a continuing 

impact on the demand of pharmaceuticals (Montoya, Netzer, and Jedidi 2007). Ignoring such behaviour may result in 

misleading inferences concerning the inventory decisions. Hence, partially observed Markov decision process (POMDP) 

approach for medicine inventory control is necessary for fulfilling the above-mentioned conditions (Montoya, Netzer, and 

Jedidi 2010). The model allows considering the impact of randomly changing environment on medicine demand that 

influences the inventory replenishment decisions. In the case of imperfect observation of knowledge about the environment, 

healthcare inventory managers or pharmacists follow certain inventory policies that may be different from the case when 

perfect knowledge is observed. A POMDP-based model, in this case, attempts to consider such situations with which the 

inventory policies based on the actual environment with absolute certainty may be compared (Arifoǧ lu and Özekici 

2010a).In this study, details of determining the optimal inventory replenishment policies for stochastic medicine demand is 

considered, and is modulated by a partially observed random environment together with all cost parameters are presented. 

The state-dependent optimal ordering policy is computed when the demand process is not perfectly observable. The decisions 

of the inventory manager are affected by the imperfect observations on the state of this process.   

The organization of the paper is as follows. Section-2 reviews the related literature. Section-3 describes the step-wise 

integrated framework and methodology. The proposed methodology is validated through a case study in Section-4. Section-5 

discusses the results. The conclusions and possible future research avenues are discussed in the last section. 

 

2. Related Literature 
Existing literature addresses four specific issues, viz. factors influencing prescription behaviour dynamics in physician 

prescription behaviour, role of physician in inventory management, and inventory management in partially-observed 

environment. A review of these issues is briefly presented below in Table-1.  

Table 1 Related Literature 

Problem Aspect 
Modelling 

Approach 
References Findings 

Factors Influencing 

Prescription 

Behaviour 

Empirical 

Modelling  

(Regression 
Analysis) 

Labi et al. 2018; Pedan & Wu 2011; Lin et 

al. 2018; Weng et al. 2013; Bhaskarabhatla 

& Chatterjee 2017; Gourgoulis et al. 2013 

Influencing Factors: 

• Pharmaceutical Detailing 

and Sampling 

• Patient Insurance 

• Specialty 
• Physicians’ Education 

• Patient Preferences 

• Clinical Effectiveness 

Dynamics in 

Prescription 

Behaviour 

Learning Model; 

Hidden Markov 

Model (HMM) 

Akçura & Ozdemir 2014; Montoya et al., 

2010; Janakiraman et al.,  2008; 

• Influence of marketing 

activities 

• States: Inactive, Infrequent,  

Frequent; Persistent, Non-

persistent 
Role of physician in 

healthcare inventory 

management 

Empirical Modelling 

(Regression 

Analysis) 

Abdulsalam et al., 2018; Nyaga et al., 2015 
Recommended standardized 

practices 

Inventory management 

in 

Partially-observed 
Environment 

HMM; POMDP 

Wang et al., 2010;  Bayraktar & Ludkovski, 

2010;  Treharne & Sox, 2002; Arifoǧ lu, K. 

& Özekici, S., 2010, 2011 Bensoussan et al., 
2005 

Partial observations effects 

optimal inventory policy 

parameters 

 

3. Methodology 
In order to address the research issues and problems identified from the review of literature, a comprehensive methodology is 

essential. The research methodology for solving the problem as described consists of a number of inter-related steps as shown 

in Figure-1. There are two parts: (i) To capture physician dynamics in prescription behaviour by hidden Markov model 

(HMM) and (ii) To determine optimal dynamic inventory replenishment policy by Partially observable Markov decision 

process (POMDP) using HMM variants. These steps are as discussed below.  

 

Step-1: Represent prescription behaviour as hidden states 

There are a finite set of physician prescription-behaviour states. Physicians prescribing fewer dose of a particular medicine 

may be denoted as the lower prescription states compared to the physicians at the higher prescription state. However, the 

pharmacists or inventory managers do not have the complete information on the actual state of the physician prescription 

behaviour. Hence, these states, denoted by PB are not observable and are hidden for the pharmacists.  

 

Step-2: Represent the quantity of medicines prescribed as observation process. 

The pharmacists cannot observe the hidden process, instead they may only observe a process, for example, quantity of a 

particular medicine prescribed by physician to a patient for a particular medical condition, denoted by OB. The stock of 

medicines is maintained based on the quantity of medicines prescribed by the physicians to the patients. The pharmacists or 
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inventory managers may observe the quantity of medicines prescribed which provides partial information about the actual 

state of prescription and accordingly decide the medicine inventory replenishment policy. 

Step-3: Compute the three HMM components. 

1. Initial State Probabilities: The initial state probabilities denote the probability that the physician, i is initially in state, 

PB with probability,  𝑃(𝑃𝐵𝑖0 = 𝑃𝐵) = 𝜋𝑖𝑃𝐵.  

2. Markov Chain Transition Matrix: With time, a physician may change from one prescription state to another due to 

various factors, such as physician-patient interactions, physician-healthcare facility interactions and physician-

pharmaceutical company interactions.  

3. Conditional Probabilities: The probability that the physician will prescribe the medicine at time t conditioned on the 

state is denoted as 𝑃(𝐷𝑖𝑡 = 𝐷𝐸𝑀|𝑃𝐵𝑖𝑡 = 𝑃𝐵) = 𝑷
𝑶𝑩, where 𝑃𝐵𝑖𝑡  is the state of physician i at time t in a Markov process 

with Y states, and 𝐷𝑖𝑡 is the dose of medicines prescribed by the physician i at time t. Conditional on being in state 𝑃𝐵 at 

time 𝑡, the dose of a medicine prescribed by physician, 𝑖, follows a negative binomial distribution with parameters 𝑟𝑖𝑡 and 

𝑝𝑖𝑃𝐵𝑡. It is observed that negative binomial distribution may easily handle such extreme values of zero in the prescription 

data. 

 

Step-4: Estimate non-homogeneous HMM model parameters. 

The non-homogeneous HMM model parameters are estimated using the Baum-Welch algorithm. The algorithm starts by 

setting the model parameters to some initial values that can be chosen from some prior knowledge. Then, using the current 

model, all possible paths for each training set are considered to get new estimates. The procedure is repeated until there are 

insignificant changes in the parameters of the current model.  

 

Step-5: Validate the model using real-life data set collected from a hospital. 

The HMM model parameters are validated using the real-time data set collected from a hospital. The data is best represented 

by a three-state HMM. The parameter estimates are then used to interpret them. To characterize the three states, the 

medication demand distribution parameters are converted into prescription probabilities conditional on being in each state.  

 

Step-6: Formulate dynamic inventory control problem as POMDP  

The inventory system is described by two states (i) inventory level (INV) and (ii) physician prescription behaviour. The 

physician prescription behaviour state is hidden or partially observed through the observation process. The inventory level 

state is completely observable. Both the state forms time-dependent Markov chains on discrete state spaces. The inventory 

control problem is formulated as POMDP which is well-suited for handling problems of HMMs. The six elements of 

POMDP is defined as the states (inventory level and physician prescription behaviour), actions (order quantity), finite set of 

observations (dose of a medicine prescribed), state transition probabilities (physicians’ prescription behaviour state transition 

and inventory level state transitions), set of observation probabilities and cost incurred function. 

 

Step-7: Define beliefs about physicians’ hidden state. 

The belief that physician is in the state, PB at the time, t is defined as 𝑏𝑖𝑡(𝑃𝐵) and the belief state vector is represented as 

𝑩𝑡 = (𝑏𝑡(𝑃𝐵 = 1),… , 𝑏𝑡(𝑃𝐵 = 𝑌))′. 
 

Step-8: Update beliefs about the physicians’ state from period t to t + 1 after observing physician’s decision, using Bayes’ 

rule, transition probability estimates, and conditional probabilities. 

 

𝑏𝑡+1(𝑃𝐵|𝑩𝑡 , 𝑂𝐵𝑡) =
∑ 𝑏𝑖𝑡(𝑃𝐵′)𝑦𝑃𝐵𝑃𝐵′𝑡𝑧𝑂𝐵𝑃𝐵𝑡
𝑌
𝑃𝐵′=1

∑ ∑ 𝑏𝑡(𝑃𝐵′)𝑦𝑃𝐵′𝑙𝑡𝑧𝑂𝐵𝑙𝑡
𝑌
𝑙=1

𝑌
𝑃𝐵′=1

 

(1) 

where, ∑ 𝑏𝑡
𝑌
𝑃𝐵=1 (𝑃𝐵) = 1                                              (2) 

 

Step-9: Model the medicine inventory control system as a Dynamic Programming (DP) problem. The objective is to 

determine, for each period, the optimal inventory policy so as to minimize the sum of expected future costs over a finite 

planning horizon. 

min
𝑄𝑡≥0

𝐸 {∑𝛼𝐶𝑡

𝑇−1

𝑡=1

} 

 (3) 

where, 𝛼 ∈ [0,1] is the discount rate and 𝐸(𝐶𝑡) = ∑ 𝑏𝑡(𝑃𝐵)𝑐𝑃𝐵𝑡
𝑌
𝑃𝐵=1  is the expected cost incurred at period t if physician is in 

the  state PB.  Let 𝑇𝐶(𝑩𝑡, 𝑃𝐵, 𝐼𝑁𝑉,𝑄) denote the value function of the dynamic program associated with belief, 𝑩𝑡 at time t = 

0, 1,…,T. At time t = 0, 

 

𝑇𝐶0(𝑩, 𝑃𝐵, 𝐼𝑁𝑉, 𝑄) = min
𝑄𝑡≥0

∑ 𝑏0(𝑃𝐵) .  𝑥𝑝𝑞(𝑄). 𝑐0
𝑃𝐵∈ℍ

(𝑃𝐵, 𝐼𝑁𝑉,𝑄) 
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                    (4) 

where, the transition probabilities of inventory level state, PINV= ‖𝑥𝑝𝑞(𝑄)‖is computed as 

𝑷𝑰𝑵𝑽 = ‖𝑥𝑝𝑞(𝑄)‖ = 𝑃𝑟𝑜𝑏(𝐼𝑁𝑉𝑡+1 = 𝑞|𝐼𝑁𝑉𝑡 = 𝑝,𝑄𝑡 = 𝑄) =

{
 
 

 
 
𝑥𝑝+𝑄−𝑞                           𝑞 ≤ 𝑝 + 𝑄

∑ 𝑥𝑑

∞

𝐷𝐸𝑀=𝑝+𝑄

                            𝑞 = 0

  0                                    𝑞 > 𝑝 + 𝑄

 

(5) 

and the expected cost incurred at period t if physician state is PB and inventory level state is INV is calculated as 

𝑐0(𝑃𝐵, 𝐼𝑁𝑉,𝑄) = 𝐾. 𝛿(𝑄) + 𝑤𝑟(𝑄) + 𝑤ℎ ∑ (𝐼𝑁𝑉 + 𝑄 − 𝐷𝐸𝑀)𝑀𝑃𝐵

𝐼𝑁𝑉+𝑄−1

𝐷𝐸𝑀=0

(𝐷𝐸𝑀)

+ 𝑤𝑒 ∑ (𝐼𝑁𝑉 + 𝑄 − 𝐷𝐸𝑀)𝑀𝑃𝐵(𝐷𝐸𝑀)

𝐷𝐸𝑀_𝑀𝑎𝑥

𝐷𝐸𝑀=𝐼𝑁𝑉+𝑄

 

(6) 

 

where, K is the fixed order cost per order, Q is the order quantity, whis the holding cost per period per unit, DEM is the 

demand for medicines, we is the expediting or emergency order cost per unit. 

At time t + 1,  

𝑇𝐶𝑡+1(𝑩, 𝑃𝐵, 𝐼𝑁𝑉,𝑄)

= min
𝑄𝑡≥0

[ ∑ 𝑏0(𝑃𝐵) .  𝑃𝑟𝑜𝑏(𝐼𝑁𝑉𝑡+1|𝐼𝑁𝑉𝑡 , 𝑄𝑡). 𝑐0
𝑃𝐵∈ℍ

(𝑃𝐵, 𝐼𝑁𝑉,𝑄)

+ 𝛼 ∑ 𝑏𝑡(𝑃𝐵). 𝑃𝑟𝑜𝑏(𝐼𝑁𝑉𝑡+1|𝐼𝑁𝑉𝑡 , 𝑄𝑡).

𝑌

𝑃𝐵=1

[𝑇𝐶𝑡+1(𝑩𝑡+1, 𝐼𝑁𝑉𝑡+1)]] 

                             (7) 

 

Step-10: Solve the problem using forward recursive algorithm, and obtain the optimal inventory replenishment policy.  

The beliefs, Bt of the hidden states are unknown prior to time, t and is available just before the decisions at time, t have to be 

made, therefore, the forward recursive algorithm is applied to solve the inventory control problem (Bertsekas 2005). The 

algorithm consists of the following steps.  

 

(i) Set the time period as t = 0, and calculate 𝑇𝐶0(𝑩, 𝑃𝐵, 𝐼𝑁𝑉, 𝑄). 
 

(ii) Substitute t + 1 for t and compute 𝑇𝐶𝑡+1(𝑩, 𝑃𝐵, 𝐼𝑁𝑉, 𝑄) by satisfying Bellman optimality equation and given the 

current beliefs.  

𝑇𝐶(𝑩𝑡, 𝑃𝐵𝑡, 𝐼𝑁𝑉𝑡 , 𝑄) = min
𝑄𝑡≥0

[𝐸 {∑𝐶𝑡(𝑩𝑡, 𝐼𝑁𝑉, 𝑄)

𝑇−1

𝑡=0

}]

= min
𝑄𝑡≥0

[ ∑ 𝑏𝑡(𝑃𝐵). 𝑐𝑡(𝑃𝐵, 𝐼𝑁𝑉,𝑄) + 𝛼 ∑ 𝑏𝑡(𝑃𝐵)𝐸[𝑇𝐶(𝑩𝑡+1, 𝐼𝑁𝑉𝑡+1)]

𝑌

𝑃𝐵=1𝑃𝐵∈ℍ

] 

(8) 

𝑐𝑇(𝐼𝑁𝑉𝑇) = 𝑤𝑢𝐼𝑁𝑉𝑇 
(9) 

 

(iii)  Set 

𝑄(𝑩𝑡 , 𝑃𝐵, 𝐼𝑁𝑉𝑡) = argmin
𝑄𝑡≥0

[ ∑ 𝑏𝑡(𝑃𝐵). 𝑐𝑡(𝑃𝐵, 𝐼𝑁𝑉, 𝑄) + 𝛼 ∑ 𝑏𝑡(𝑃𝐵)𝐸[𝑇𝐶(𝑩𝑡+1, 𝐼𝑁𝑉𝑡+1)]

𝑌

𝑃𝐵=1𝑃𝐵∈ℍ

] 

(10) 

(iv)  If t = T – 1, stop; otherwise, return to Step (iii). 
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Prescription Behaviour

Modelling and Analysis of Dynamic 

Inventory Control System

Step-1: Represent prescription 
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Step-3: Compute the three HMM 

parameters:

    (a) initial hidden states  

probabilities

     (b) sequence of transition 

probabilities among prescription-

behaviour states 

(c) set of prescription probabilities 

conditioned on prescription- 

behaviour states

Step-4: Estimate non-homogeneous 

HMM model using hospital data set

Step-5: Validate the model

Step-6: Formulate dynamic inventory 

optimization problem as POMDP 

Step-7: Define beliefs about 

physicians’ hidden states 

Step-8: Update belief after observing 

physicians’ decision using Bayes’ rule, 

transition probability estimates and 

conditional choice probabilities

Step-9: Model the problem using DP 
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sum of discounted expected future costs 

subject to space and service level 
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with current inventory policy of 
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Figure 1 Integrated Framework  

 

4. Case Study 
The data used to calibrate and validate the model are sampled from the database provided by a multi-specialty hospital in the 

eastern part of India. The features of the hospital selected for data collection comprises 15 types of departments, 24-bed 

types, 226 functional beds, 12000 patient admissions per year, 506 doctors and 5359 types of pharmaceutical products. Three 

different types of information are collected: (i) Patient-related information, (ii) Physician-related information and (iii) 

Medicine-related information. The patient-related information includesPatient ID and name, Date of arrival, transferral and 

discharge, Provisional and final diagnosis and treatment, Type of care unit and Insurance Scheme. Physician-related 

information includes Patient ID and name, Physician name allotted to patients, their Specialization and Prescription date. The 

Medicine-related information includes Patient ID and name, Physician name, Name of medicines ordered, Date of 

purchasing and receiving of order, Quantity ordered and Purchase price of the medicines. 

One particular medicine is selected to validate the usability of the model. The generic name of the medicine is Piperacillin – 

Tazobactam and brand name is Zosyn. Its therapeutic use is for bacterial infections. In aggregate, there are 66 physicians 

prescribed this medicine in a year. The variability in physician prescription behaviour of two physicians is shown in 

 
Figure-2 (a, b) 

 

(a) 
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(b) 
Figure 2 (a-b) Variability in Physician Prescription Behaviour 

The demand in high, moderate and low state follows a negative binomial distribution with parameters (r1, p1), (r2, p2) and 

(r3, p3), respectively as shown in Table-2. 

 
Table 2 Parameters of Demand Distribution 

State 1 State 2 State 3 

r1 p1 μ1 σ1 r2 p2 μ2 σ2 r3 p3 μ3 σ3 

82.95 0.92 6.44 2.64 126.21 0.88 16.58 4.31 15.22 0.28 39.10 11.73 

 

The inventory-related cost parameter values are based on the real costs incurred at the hospital being studied. The purchase 

price of the medicine under study is Rs 1027. The unit holding cost is 0.10, i.e. holding a medicine in stock for 1 year costs 

36.5, which is 3.5% of its purchase price, which is followed by the hospital administration. The unit outdating cost is decided 

to be around 20% of purchase price. Because expensive medicines are considered, the expediting cost is considered smaller 

than the outdating cost. The unit expediting cost is thus around 10% of the purchase price. Without loss of generality, the unit 

variable ordering cost is set at 0.01 and fixed ordering cost is set at 10. The cost parameters are the same when the observed 

environment is in any state as the effect due to differences in cost parameters may suppress the effect of the observation level.  

A three-state HMM is used to describe the physician prescription behaviour of this hospital as described in Table-3. The 

initial state transition matrix is given by the prior distribution. The physicians’ prescription behaviour changes after 

monitoring the patient the next day due to factors like a change in patient condition, type of care unit, etc. Hence, it is 

assumed that the duration time for each state is one day. This means that the prescription behaviour state may change to other 

states on the next day or may remain same.  

 
Table 3 Interpretation of States 

States Description 

LOW Physicians prescribe less dose of medicine to patients 

MEDIUM Physicians prescribe a medium dose of medicine to patients 

HIGH Physicians prescribe a high dose of medicine to patients 

 

Table-4 lists the parameter values used to generate the cases for the computational results. There are 6 cases (1 prior 

distribution × 1 transition matrix × 6 emission matrices). The parameter values of prior distributions at time 0 indicates that a 

physician is initially at the low prescription state (state-1). The transition probability matrices model a stable process with 

positive correlation, which indicates that a physician with time has the propensity to remain in its initial state. The emission 

probability matrices describe the level of information and are parameterized such that E1 corresponds to the imperfect 

situation where the observations do not provide complete or perfect information about the real environment. As it moves from 

E1 to E6 the perfection in the observations improves. Hence, E6 corresponds to the perfect situation where the observations 

provide complete or perfect information about the real environment. 

 
Table 4 Model Parameter Values 

Periods 4 

Holding Cost, wh 0.10 

Expediting Cost, we 100 

Ordering Cost: 

Fixed  

Variable 

 
10 

0.01 

Outdating Cost 200 
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Prize Distribution 

 State-1 State-2 State-3 

Initial 1.00 0.00 0.00 

H: High 0.10 0.30 0.60 

L: Low 0.60 0.30 0.10 

    

Transition Matrices 

SP: Stable Process with Positive Correlation 

0.8 0.1 0.1 

0.1 0.8 0.1 

0.1 0.1 0.8 

SN: Stable Process with Negative Correlation 

0.2 0.4 0.4 

0.4 0.2 0.4 

0.4 0.4 0.2 

SZ: Stable Process with  Zero Correlation 

0.333 0.333 0.333 

0.333 0.333 0.333 

0.333 0.333 0.333 

US: Slow Upward Trend Process 

0.8 0.1 0.1 

0.0 0.8 0.2 

0.0 0.0 1.0 

UF: Fast Upward Trend Process 

0.2 0.4 0.4 

0.0 0.2 0.8 

0.0 0.0 1.0 

DS: Slow Downward Trend Process 

1.0 0.0 0.0 

0.2 0.8 0.0 

0.1 0.1 0.8 

DF: Fast Downward Trend Process 

1.00 0.0 0.0 

0.8 0.2 0.0 

0.4 0.4 0.2 

Emission Probability Matrices 

E1 

0.50 0.25 0.25 

0.25 0.50 0.25 

0.25 0.25 0.50 

E2 

0.60 0.20 0.20 

0.20 0.60 0.20 

0.20 0.20 0.60 

E3 

0.70 0.15 0.15 

0.15 0.70 0.15 

0.15 0.15 0.70 

E4 

0.80 0.10 0.10 

0.10 0.80 0.10 

0.10 0.10 0.80 

E5 

0.90 0.05 0.05 

0.05 0.90 0.05 

0.05 0.05 0.90 

E6 

1.00 0.00 0.00 

0.00 1.00 0.00 

0.00 0.00 1.00 
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So far, the parameters of the HMM model are initialized. The state sequence and the optimal model parameters will be 

continuously updated once new observable prescription behaviour-related information is added. The case with initial state 

probability, initial transition matrix and imperfect information emission matrix are used as initial guess for illustration 

purpose, and are then trained accordingly by using the ‘hmmtrain’ function in MATLAB. The ‘hmmtrain’ function estimates 

the transition and emission probabilities for a HMM using the Baum-Welch algorithm. The results of the trained HMM model 

is given below. 

 

𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑃𝐵 [

0.853 0.099 0.048
0.168 0.756 0.076
0.194 0.122 0.684

] 

 

𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑂𝐵 [

0.628 0.001 0.371
0.146 0.658 0.194
0.001 0.221 0.778

] 

 

The belief about the physicians’ state is updated using the estimated values of transition matrix and emission matrix and is 

provided in Table-5. 

 
Table5 Belief State Updating after Actual Observation 

Hidden 
State 

Belief at t = 0 
Observed 

State 
Updated Belief at t = 1 

1 1 

1 

0.8889 

2 0 0.0556 

3 0 0.0556 

1 1 

2 

0.7273 

2 0 0.1818 

3 0 0.0909 

1 1 

3 

0.7273 

2 0 0.0909 

3 0 0.1818 

 

5. Results and Discussions 
For the numerical illustration, MATLAB is used to code the dynamic programming algorithm for multi-period model. 

Although it is possible to run the code for N > 4, we prefer N = 4 since this is sufficient to capture the managerial insights. 

The demand in high, moderate and low state follows negative binomial distribution. The case with initial prior distribution, 

stable process with positive correlation transition matrix and all observation levels are used as initial guess for illustrat ion 

purpose and are then trained accordingly. The optimal inventory policy parameters (s, S) for time 0 to 4 are obtained by 

solving the optimization problem using the Forward recursion algorithm and the results are provided in Table-6which 

summarizes the optimal threshold levels ‘s’ and ‘S’ for time 0 to 4 for each case. It is known that ‘s’ is the reorder level and 

‘S’ is the order-up-to level. For example, when the observation level is E1, optimal s and S at time 0 is (10, 11) respectively. 

At time 1, they increase to (11, 15) respectively. From the results at time 1, it is seen that policy parameters are non-

decreasing in observation level. When the environment is completely observable with perfect information (E6), the optimal 

threshold levels are s = 11 and S = 16 at time t = 1.  

The threshold levels in completely unobservable (E1) case are lower compared to the fully observable case (E6). This is 

intuitive as using the same policy as in the full observation case may lead to tremendous losses if the observed state is not  the 

real one. Moreover, it is observed that the probability of being in high state when it is observed at time 1 is greater than the 

probability of being in the high state when the low state is observed at time 1. This implies that as the observation level 

increases, the optimal policy in imperfect information case will converge to the optimal policy in perfect information case. 

Therefore, it is intuitive that as observation level increases, the threshold level at time t increases if the high state is observed 

while they decrease if the low state is observed. 

 

6. Conclusions 
In this paper, the main aim is to characterize the optimal policy structures for inventory models with different random 

scenarios in a partially observed random environment. As in the model that consider random environment, the real 

environment is assumed to follow Markov chain. However, it is also assumed that environmental state is not fully observed. 

Instead, another process, not necessarily a Markov chain, which gives partial information about the real environment, is 

observed. Under this setting, the model is analyzed by using sufficient statistic formulation. The model shows that state-

dependent (s, S) policy is optimal for this type of inventory models with fixed ordering cost.  
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The future scope of research may be extending the model to obtain optimal policy structure for inventory models with 

fixed-ordering cost, fully observed random capacity and partially observed availability. 



Table-10 Optimal Inventory Policy 
Case-1: SP 

Time Period 
E1 E2 E3 E4 E5 E6 

b1 (s, S) b2 (s, S) b3 (s, S) b4 (s, S) b5 (s, S) b6 (s, S) 

t = 0 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 

t = 1 0.2721 (11, 15) 0.5286 (11, 15) 0.6356 (11, 15) 0.7494 (11, 16) 0.8706 (11, 16) 1.0000 (11, 16) 

t = 2 0.3685 (11, 21) 0.7936 (11, 21) 0.8907 (11, 22) 0.9516 (11, 22) 0.9852 (11, 22) 1.0000 (11, 22) 

t = 3 0.4172 (11, 22) 0.8882 (11, 22) 0.9467 (11, 23) 0.9755 (11, 23) 0.9906 (11, 24) 1.0000 (11, 24) 

t = 4 0.4455 (11, 22) 0.9181 (11, 22) 0.9577 (11, 23) 0.9781 (11, 23) 0.9909 (11, 24) 1.0000 (11, 24) 

 
Case-2: SN 

Time Period 
E1 E2 E3 E4 E5 E6 

b1 (s, S) b2 (s, S) b3 (s, S) b4 (s, S) b5 (s, S) b6 (s, S) 

t = 0 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 

t = 1 0.4870 (11, 16) 0.7353 (11, 17) 0.8121 (11, 17) 0.8810 (11, 17) 0.9434 (11, 18) 1.0000 (11, 18) 

t = 2 0.4203 (11, 21) 0.6222 (11, 19) 0.7007 (11, 19) 0.7869 (11, 19) 0.8849 (11, 18) 1.0000 (11, 18) 

t = 3 0.4327 (11, 22) 0.6502 (11, 19) 0.7263 (11, 19) 0.8049 (11, 19) 0.8920 (11, 18) 1.0000 (11, 18) 

t = 4 0.4298 (11, 22) 0.6432 (11, 19) 0.7205 (11, 19) 0.8016 (11, 19) 0.8912 (11, 18) 1.0000 (11, 18) 

 
Case-3: SZ 

Time Period 
E1 E2 E3 E4 E5 E6 

b1 (s, S) b2 (s, S) b3 (s, S) b4 (s, S) b5 (s, S) b6 (s, S) 

t = 0 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 

t = 1 0.4423 (11, 16) 0.7041 (11, 17) 0.7873 (11, 17) 0.8638 (11, 17) 0.9345 (11, 17) 1.0000 (11, 17) 

t = 2 0.4423 (11, 21) 0.7041 (11, 20) 0.7873 (11, 20) 0.8638 (11, 20) 0.9345 (11, 20) 1.0000 (11, 19) 

t = 3 0.4423 (11, 22) 0.7041 (11, 19) 0.7873 (11, 19) 0.8638 (11, 19) 0.9345 (11, 19) 1.0000 (11, 19) 

t = 4 0.4423 (11, 22) 0.7041 (11, 19) 0.7873 (11, 19) 0.8638 (11, 19) 0.9345 (11, 19) 1.0000 (11, 19) 

 
Case-4: US 

Time Period 
E1 E2 E3 E4 E5 E6 

b1 (s, S) b2 (s, S) b3 (s, S) b4 (s, S) b5 (s, S) b6 (s, S) 

t = 0 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 

t = 1 0.1530 (11, 15) 0.3514 (11, 15) 0.4573 (11, 15) 0.5909 (11, 16) 0.7647 (11, 16) 1.0000 (11, 16) 

t = 2 0.1918 (11, 20) 0.6653 (11, 21) 0.8197 (11, 22) 0.9233 (11, 22) 0.9792 (11, 22) 1.0000 (11, 22) 

t = 3 0.2126 (11, 22) 0.8375 (11, 22) 0.9314 (11, 23) 0.9723 (11, 23) 0.9903 (11, 24) 1.0000 (11, 24) 

t = 4 0.2221 (11, 22) 0.9004 (11, 22) 0.9543 (11, 23) 0.9776 (11, 23) 0.9909 (11, 24) 1.0000 (11, 24) 

 
Case-5: UF 

Time Period 
E1 E2 E3 E4 E5 E6 

b1 (s, S) b2 (s, S) b3 (s, S) b4 (s, S) b5 (s, S) b6 (s, S) 

t = 0 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 

t = 1 0.0522 (11, 14) 0.1417 (11, 16) 0.2043 (11, 16) 0.3056 (11, 16) 0.4976 (11, 17) 1.0000 (11, 18) 

t = 2 0.0292 (11, 18) 0.1901 (11, 19) 0.3386 (11, 19) 0.5568 (11, 19) 0.8097 (11, 18) 1.0000 (11, 18) 

t = 3 0.0171 (11, 22) 0.2352 (11, 19) 0.4417 (11, 19) 0.6703 (11, 19) 0.8589 (11, 18) 1.0000 (11, 18) 

t = 4 0.0104 (11, 22) 0.2697 (11, 19) 0.4432 (11, 19) 0.6987 (11, 19) 0.8635 (11, 18) 1.0000 (11, 18) 

 
Case-6: DS 

Time Period 
E1 E2 E3 E4 E5 E6 

b1 (s, S) b2 (s, S) b3 (s, S) b4 (s, S) b5 (s, S) b6 (s, S) 

t = 0 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 0.1000 (10, 11) 

t = 1 0.3369 (11, 15) 0.6038 (11, 16) 0.7033 (11, 16) 0.8025 (11, 15) 0.9014 (11, 15) 1.0000 (11, 15) 

t = 2 0.5204 (11, 21) 0.8908 (11, 22) 0.9501 (11, 22) 0.9820 (11, 22) 0.9963 (11, 22) 1.0000 (11, 22) 
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t = 3 0.6421 (11, 22) 0.9725 (11, 23) 0.9922 (11, 24) 0.9984 (11, 24) 0.9999 (11, 25) 1.0000 (11, 25) 

t = 4 0.7274 (11, 22) 0.9930 (11, 23) 0.9987 (11, 24) 0.9999 (11, 24) 1.0000 (11, 24) 1.0000 (11, 25) 

 

Case-7: DF 

Time Period 
E1 E2 E3 E4 E5 E6 

b1 (s, S) b2 (s, S) b3 (s, S) b4 (s, S) b5 (s, S) b6 (s, S) 

t = 0 0.1000 (10,11) 0.1000 (10,11) 0.1000 (10,11) 0.1000 (10,11) 0.1000 (10,11) 0.1000 (10,11) 

t = 1 0.6419 (11,16) 0.8432 (11,16) 0.8932 (11,16) 0.9348 (11,16) 0.9699 (11,15) 1.0000 (11,15) 

t = 2 0.9206 (11,22) 0.9881 (11,22) 0.9948 (11,22) 0.9981 (11,22) 0.9996 (11,22) 1.0000 (11,22) 

t = 3 0.9841 (11,22) 0.9992 (11,23) 0.9997 (11,24) 0.9999 (11,24) 0.9999 (12,25) 1.0000 (12,25) 

t = 4 0.9969 (11,22) 0.9992 (11,23) 0.9999 (11,24) 0.9999 (11,24) 0.9999 (12,24) 1.0000 (12,25) 
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